ترغب بنشر مسار تعليمي؟ اضغط هنا

Bayesian inference for stochastic differential equation mixed effects models of a tumor xenography study

169   0   0.0 ( 0 )
 نشر من قبل Umberto Picchini
 تاريخ النشر 2016
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider Bayesian inference for stochastic differential equation mixed effects models (SDEMEMs) exemplifying tumor response to treatment and regrowth in mice. We produce an extensive study on how a SDEMEM can be fitted using both exact inference based on pseudo-marginal MCMC and approximate inference via Bayesian synthetic likelihoods (BSL). We investigate a two-compartments SDEMEM, these corresponding to the fractions of tumor cells killed by and survived to a treatment, respectively. Case study data considers a tumor xenography study with two treatment groups and one control, each containing 5-8 mice. Results from the case study and from simulations indicate that the SDEMEM is able to reproduce the observed growth patterns and that BSL is a robust tool for inference in SDEMEMs. Finally, we compare the fit of the SDEMEM to a similar ordinary differential equation model. Due to small sample sizes, strong prior information is needed to identify all model parameters in the SDEMEM and it cannot be determined which of the two models is the better in terms of predicting tumor growth curves. In a simulation study we find that with a sample of 17 mice per group BSL is able to identify all model parameters and distinguish treatment groups.



قيم البحث

اقرأ أيضاً

Stochastic differential equations (SDEs) are established tools to model physical phenomena whose dynamics are affected by random noise. By estimating parameters of an SDE intrinsic randomness of a system around its drift can be identified and separat ed from the drift itself. When it is of interest to model dynamics within a given population, i.e. to model simultaneously the performance of several experiments or subjects, mixed-effects modelling allows for the distinction of between and within experiment variability. A framework to model dynamics within a population using SDEs is proposed, representing simultaneously several sources of variation: variability between experiments using a mixed-effects approach and stochasticity in the individual dynamics using SDEs. These stochastic differential mixed-effects models have applications in e.g. pharmacokinetics/pharmacodynamics and biomedical modelling. A parameter estimation method is proposed and computational guidelines for an efficient implementation are given. Finally the method is evaluated using simulations from standard models like the two-dimensional Ornstein-Uhlenbeck (OU) and the square root models.
We consider the problem of selecting deterministic or stochastic models for a biological, ecological, or environmental dynamical process. In most cases, one prefers either deterministic or stochastic models as candidate models based on experience or subjective judgment. Due to the complex or intractable likelihood in most dynamical models, likelihood-based approaches for model selection are not suitable. We use approximate Bayesian computation for parameter estimation and model selection to gain further understanding of the dynamics of two epidemics of chronic wasting disease in mule deer. The main novel contribution of this work is that under a hierarchical model framework we compare three types of dynamical models: ordinary differential equation, continuous time Markov chain, and stochastic differential equation models. To our knowledge model selection between these types of models has not appeared previously. Since the practice of incorporating dynamical models into data models is becoming more common, the proposed approach may be very useful in a variety of applications.
Stochastic differential equation mixed-effects models (SDEMEMs) are flexible hierarchical models that are able to account for random variability inherent in the underlying time-dynamics, as well as the variability between experimental units and, opti onally, account for measurement error. Fully Bayesian inference for state-space SDEMEMs is performed, using data at discrete times that may be incomplete and subject to measurement error. However, the inference problem is complicated by the typical intractability of the observed data likelihood which motivates the use of sampling-based approaches such as Markov chain Monte Carlo. A Gibbs sampler is proposed to target the marginal posterior of all parameter values of interest. The algorithm is made computationally efficient through careful use of blocking strategies and correlated pseudo-marginal Metropolis-Hastings steps within the Gibbs scheme. The resulting methodology is flexible and is able to deal with a large class of SDEMEMs. The methodology is demonstrated on three case studies, including tumor growth dynamics and neuronal data. The gains in terms of increased computational efficiency are model and data dependent, but unless bespoke sampling strategies requiring analytical derivations are possible for a given model, we generally observe an efficiency increase of one order of magnitude when using correlated particle methods together with our blocked-Gibbs strategy.
The interpretation of numerical methods, such as finite difference methods for differential equations, as point estimators suggests that formal uncertainty quantification can also be performed in this context. Competing statistical paradigms can be c onsidered and Bayesian probabilistic numerical methods (PNMs) are obtained when Bayesian statistical principles are deployed. Bayesian PNM have the appealing property of being closed under composition, such that uncertainty due to different sources of discretisation in a numerical method can be jointly modelled and rigorously propagated. Despite recent attention, no exact Bayesian PNM for the numerical solution of ordinary differential equations (ODEs) has been proposed. This raises the fundamental question of whether exact Bayesian methods for (in general nonlinear) ODEs even exist. The purpose of this paper is to provide a positive answer for a limited class of ODE. To this end, we work at a foundational level, where a novel Bayesian PNM is proposed as a proof-of-concept. Our proposal is a synthesis of classical Lie group methods, to exploit underlying symmetries in the gradient field, and non-parametric regression in a transformed solution space for the ODE. The procedure is presented in detail for first and second order ODEs and relies on a certain strong technical condition -- existence of a solvable Lie algebra -- being satisfied. Numerical illustrations are provided.
We use the theory of normal variance-mean mixtures to derive a data augmentation scheme for models that include gamma functions. Our methodology applies to many situations in statistics and machine learning, including Multinomial-Dirichlet distributi ons, Negative binomial regression, Poisson-Gamma hierarchical models, Extreme value models, to name but a few. All of those models include a gamma function which does not admit a natural conjugate prior distribution providing a significant challenge to inference and prediction. To provide a data augmentation strategy, we construct and develop the theory of the class of Exponential Reciprocal Gamma distributions. This allows scalable EM and MCMC algorithms to be developed. We illustrate our methodology on a number of examples, including gamma shape inference, negative binomial regression and Dirichlet allocation. Finally, we conclude with directions for future research.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا