ترغب بنشر مسار تعليمي؟ اضغط هنا

Study of baryon acoustic oscillations with SDSS DR12 data and measurement of $Omega_textrm{DE}(a)$

63   0   0.0 ( 0 )
 نشر من قبل Bruce Hoeneisen
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف B. Hoeneisen




اسأل ChatGPT حول البحث

We define Baryon Acoustic Oscillation (BAO) distances $hat{d}_alpha(z, z_c)$, $hat{d}_z(z, z_c)$, and $hat{d}_/(z, z_c)$ that do not depend on cosmological parameters. These BAO distances are measured as a function of redshift $z$ with the Sloan Digital Sky Survey (SDSS) data release DR12. From these BAO distances alone, or together with the correlation angle $theta_textrm{MC}$ of the Cosmic Microwave Background (CMB), we constrain the cosmological parameters in several scenarios. We find $4.3 sigma$ tension between the BAO plus $theta_textrm{MC}$ data and a cosmology with flat space and constant dark energy density $Omega_textrm{DE}(a)$. Releasing one and/or the other of these constraints obtains agreement with the data. We measure $Omega_textrm{DE}(a)$ as a function of $a$.

قيم البحث

اقرأ أيضاً

52 - B. Hoeneisen 2016
We define Baryon Acoustic Oscillation (BAO) observables $hat{d}_alpha(z, z_c)$, $hat{d}_z(z, z_c)$, and $hat{d}_/(z, z_c)$ that do not depend on any cosmological parameter. From each of these observables we recover the BAO correlation length $d_textr m{BAO}$ with its respective dependence on cosmological parameters. These BAO observables are measured as a function of redshift $z$ with the Sloan Digital Sky Survey (SDSS) data release DR12. From the BAO measurements alone, or together with the correlation angle $theta_textrm{MC}$ of the Cosmic Microwave Background (CMB), we constrain the curvature parameter $Omega_k$ and the dark energy density $Omega_textrm{DE}(a)$ as a function of the expansion parameter $a$ in several scenarios. These observables are further constrained with external measurements of $h$ and $Omega_textrm{b} h^2$. We find some tension between the data and a cosmology with flat space and constant dark energy density $Omega_textrm{DE}(a)$.
56 - B. Hoeneisen 2016
We measure the baryon acoustic oscillation (BAO) observables $hat{d}_alpha(z, z_c)$, $hat{d}_z(z, z_c)$, and $hat{d}_/(z, z_c)$ as a function of redshift $z$ in the range 0.1 to 0.7 with Sloan Digital Sky Survey (SDSS) data release DR13. These observ ables are independent and satisfy a consistency relation that provides discrimination against miss-fits due to background fluctuations. From these measurements and the correlation angle $theta_textrm{MC}$ of fluctuations of the Cosmic Microwave Background (CMB) we obtain $Omega_k = -0.015 pm 0.030$, $Omega_{textrm{DE}} + 2.2 Omega_k = 0.717 pm 0.004$ and $w_1 = 0.37 pm 0.61$ for dark energy density allowed to vary as $Omega_{textrm{DE}}(a) = Omega_{textrm{DE}} [ 1 + w_1 ( 1 - a)]$. We present measurements of $Omega_{textrm{DE}}(a)$ at six values of the expansion parameter $a$. Fits with several scenarios and data sets are presented. The data is consistent with space curvature parameter $Omega_k = 0$ and $Omega_{textrm{DE}}(a)$ constant.
(abridged) The scale of the acoustic oscillation of baryons at the baryon-photon decoupling is imprinted on the spatial distribution of galaxies in the Universe, known as the baryon acoustic oscillation (BAO). The correlation functions and power spec trum are used as a central tool for the studies on the BAO analysis. In this work, we analyzed the spatial distribution of galaxies with a method from the topological data analysis (TDA), in order to detect and examine the BAO signal in the galaxy distribution. The TDA provides a method to treat various types of holes in point set data, by constructing the persistent homology (PH) group from the geometric structure of data points and handling the topological information of the dataset. We can obtain the information on the size, position, and statistical significance of the holes in the data. A particularly strong point of the persistent homology is that it can classify the holes by their spatial dimension, i.e., a 0-dim separation, 1-dim loop, 2-dim shell, etc. We first analyzed the simulation datasets with and without the baryon physics to examine the performance of the PH method. We found that the PH is indeed able to detect the BAO signal: simulation data with baryon physics present a prominent signal from the BAO, while data without baryon physics does not show this signal. Then, we applied the PH to a quasar sample at $z <1.0$ from extended Baryon Oscillation Spectroscopic Survey in Sloan Digital Sky Survey Data Release 14. We discovered a characteristic hole (a hollow shell) at a scaler $sim150 [{rm Mpc}]$. This exactly corresponds to the BAO signature imprinted in the galaxy/quasar distribution. We performed this analysis on a small subsample of 2000 quasars. This clearly demonstrates that the PH analysis is very efficient in finding this type of topological structures even if the sampling is very sparse.
The clustering properties of the Universe at large-scales are currently being probed at various redshifts through several cosmological tracers and with diverse statistical estimators. Here we use the three-point angular correlation function (3PACF) t o probe the baryon acoustic oscillation (BAO) features in the quasars catalogue from the twelfth data release of the Sloan Digital Sky Survey, with mean redshift z = 2.225, detecting the BAO imprint with a statistical significance of 2.9{sigma}, obtained using lognormal mocks. Following a quasi model-independent approach for the 3PACF, we find the BAO transversal signature for triangles with sides $theta_1 = 1.0^circ$ and $theta_2 = 1.5^circ$ and the angle between them of $alpha = 1.59 pm 0.17$ rad, a value that corresponds to the angular BAO scale ${theta}_{BAO} = 1.82^circ pm 0.21^circ$ , in excellent agreement with the value found in a recent work (${theta}_{BAO} = 1.77^circ pm 0.31^circ$ ) applying the 2PACF to similar data. Moreover, we performed two type of tests: one to confirm the robustness of the BAO signal in the 3PACF through random displacements in the dataset, and the other to verify the suitability of our random samples, a null test that in fact does not show any signature that could bias our results.
We present the first high significance detection ($4.1sigma$) of the Baryon Acoustic Oscillations (BAO) feature in the galaxy bispectrum of the twelfth data release (DR12) of the Baryon Oscillation Spectroscopic Survey (BOSS) CMASS sample ($0.43 leq z leq 0.7$). We measured the scale dilation parameter, $alpha$, using the power spectrum, bispectrum, and both simultaneously for DR12, plus 2048 MultiDark-PATCHY mocks in the North and South Galactic Caps (NGC and SGC, respectively), and the volume weighted averages of those two samples (N+SGC). The fitting to the mocks validated our analysis pipeline, yielding values consistent with the mock cosmology. By fitting to the power spectrum and bispectrum separately, we tested the robustness of our results, finding consistent values from the NGC, SGC and N+SGC in all cases. We found $D_{mathrm{V}} = 2032 pm 24 (mathrm{stat.}) pm 15 (mathrm{sys.})$ Mpc, $D_{mathrm{V}} = 2038 pm 55 (mathrm{stat.}) pm 15 (mathrm{sys.})$ Mpc, and $D_{mathrm{V}} = 2031 pm 22 (mathrm{stat.}) pm 10 (mathrm{sys.})$ Mpc from the N+SGC power spectrum, bispectrum and simultaneous fitting, respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا