ﻻ يوجد ملخص باللغة العربية
We theoretically study an emergent SU(2) symmetry which is suggested by recent magneto-transport measurements, carried out near two electrons filling of a carbon nanotube quantum dot. It emerges in the case where the spin and orbital Zeeman splittings cancel each other out for two of the one-particle dot levels among four. Using the Wilson numerical renormalization group, we show that a crossover from the SU(4) to SU(2) Fermi-liquid behavior occurs at two impurity-electrons filling as magnetic field increases. We also find that the quasiparticles are significantly renormalized as the remaining two one-particle levels move away from the Fermi level and are frozen at high magnetic fields. In order to clarify how the ground state evolves during such a crossover, we also reexamine the SU(N) Kondo singlet state for M impurity-electrons filling in the limit of strong exchange interactions. We show that the nondegenerate Fermi-liquid fixed point of Nozi`{e}es and Blandin can be described as a bosonic Perron-Frobenius vector for M hard-core bosons, each of which consists of one impurity-electron and one conduction hole. This interpretation can also be applied to the Fermi-liquid fixed-point without the SU(N) symmetry.
We study finite-temperature properties of the Kondo effect in a carbon nanotube (CNT) quantum dot using the Wilson numerical renormalization group (NRG). In the absence of magnetic fields, four degenerate energy levels of the CNT consisting of spin a
We investigate a tunable two-impurity Kondo system in a strongly correlated carbon nanotube double quantum dot, accessing the full range of charge regimes. In the regime where both dots contain an unpaired electron, the system approaches the two-impu
The sensitivity of shot noise to the interplay between Kondo correlations and superconductivity is investigated in a carbon nanotube quantum dot connected to superconducting electrodes. Depending on the gate voltage, the SU(2) and SU(4) Kondo unitary
Semiconductor nano-devices have been scaled to the level that transport can be dominated by a single dopant atom. In the strong coupling case a Kondo effect is observed when one electron is bound to the atom. Here, we report on the spin as well as or
The Kondo effect is a key many-body phenomenon in condensed matter physics. It concerns the interaction between a localised spin and free electrons. Discovered in metals containing small amounts of magnetic impurities, it is now a fundamental mechani