ترغب بنشر مسار تعليمي؟ اضغط هنا

502 Gbits/s Quantum Random Number Generation with Simple and Compact Structure

50   0   0.0 ( 0 )
 نشر من قبل Bingjie Xu
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose and implement a simple and compact quantum random number generation (QRNG) scheme based on the quantum phase fluctuations of a DFB laser. The distribution probability of the experimentally measured data fits well with the simulation result, got from the theoretical model we established. Min-entropy estimation and Toeplitz-hashing randomness extractor are used to obtain the final random bit. The proposed approach has advantages not only in simple structure but also in high random bit generation rate. As a result, 502 Gbits/s random bits generation speed can be obtained, which is much higher than previous similar schemes. This approach offers a possibility to promote the practical application of QRNG.

قيم البحث

اقرأ أيضاً

Fast secure random number generation is essential for high-speed encrypted communication, and is the backbone of information security. Generation of truly random numbers depends on the intrinsic randomness of the process used and is usually limited b y electronic bandwidth and signal processing data rates. Here we use a multiplexing scheme to create a fast quantum random number generator structurally tailored to encryption for distributed computing, and high bit-rate data transfer. We use vacuum fluctuations measured by seven homodyne detectors as quantum randomness sources, multiplexed using a single integrated optical device. We obtain a random number generation rate of 3.08 Gbit/s, from only 27.5 MHz of sampled detector bandwidth. Furthermore, we take advantage of the multiplexed nature of our system to demonstrate an unseeded strong extractor with a generation rate of 26 Mbit/s.
70 - Yu-Huai Li , Xuan Han , Yuan Cao 2021
The entropy or randomness source is an essential ingredient in random number generation. Quantum random number generators generally require well modeled and calibrated light sources, such as a laser, to generate randomness. With uncharacterized light sources, such as sunlight or an uncharacterized laser, genuine randomness is practically hard to be quantified or extracted owing to its unknown or complicated structure. By exploiting a recently proposed source-independent randomness generation protocol, we theoretically modify it by considering practical issues and experimentally realize the modified scheme with an uncharacterized laser and a sunlight source. The extracted randomness is guaranteed to be secure independent of its source and the randomness generation speed reaches 1 Mbps, three orders of magnitude higher than the original realization. Our result signifies the power of quantum technology in randomness generation and paves the way to high-speed semi-self-testing quantum random number generators with practical light sources.
88 - Jie Yang , Jinlu Liu , Qi Su 2016
We present a random number generation scheme based on measuring the phase fluctuations of a laser with a simple and compact experimental setup. A simple model is established to analyze the randomness and the simulation result based on this model fits well with the experiment data. After the analog to digital sampling and suitable randomness extraction integrated in the field programmable gate array, the final random bits are delivered to a PC, realizing a 5.4 Gbps real time quantum random number generation. The final random bit sequences have passed all the NIST and DIEHARD tests.
Phase-randomized optical homodyne detection is a well-known technique for performing quantum state tomography. So far, it has been mainly considered a sophisticated tool for laboratory experiments but unsuitable for practical applications. In this wo rk, we change the perspective and employ this technique to set up a practical continuous-variable quantum random number generator. We exploit a phase-randomized local oscillator realized with a gain-switched laser to bound the min-entropy and extract true randomness from a completely uncharacterized input, potentially controlled by a malicious adversary. Our proof-of-principle implementation achieves an equivalent rate of 270 Mbit/s. In contrast to other source-device-independent quantum random number generators, the one presented herein does not require additional active optical components, thus representing a viable solution for future compact, modulator-free, certified generators of randomness.
We describe a methodology and standard of proof for experimental claims of quantum random number generation (QRNG), analogous to well-established methods from precision measurement. For appropriately constructed physical implementations, lower bounds on the quantum contribution to the average min-entropy can be derived from measurements on the QRNG output. Given these bounds, randomness extractors allow generation of nearly perfect {epsilon}-random bit streams. An analysis of experimental uncertainties then gives experimentally derived confidence levels on the {epsilon} randomness of these sequences. We demonstrate the methodology by application to phase-diffusion QRNG, driven by spontaneous emission as a trusted randomness source. All other factors, including classical phase noise, amplitude fluctuations, digitization errors and correlations due to finite detection bandwidth, are treated with paranoid caution, i.e., assuming the worst possible behaviors consistent with observations. A data-constrained numerical optimization of the distribution of untrusted parameters is used to lower bound the average min-entropy. Under this paranoid analysis, the QRNG remains efficient, generating at least 2.3 quantum random bits per symbol with 8-bit digitization and at least 0.83 quantum random bits per symbol with binary digitization, at a confidence level of 0.99993. The result demonstrates ultrafast QRNG with strong experimental guarantees.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا