ﻻ يوجد ملخص باللغة العربية
We give upper and lower bounds on the information-theoretic threshold for community detection in the stochastic block model. Specifically, consider the symmetric stochastic block model with $q$ groups, average degree $d$, and connection probabilities $c_text{in}/n$ and $c_text{out}/n$ for within-group and between-group edges respectively; let $lambda = (c_text{in}-c_text{out})/(qd)$. We show that, when $q$ is large, and $lambda = O(1/q)$, the critical value of $d$ at which community detection becomes possible---in physical terms, the condensation threshold---is [ d_text{c} = Theta!left( frac{log q}{q lambda^2} right) , , ] with tighter results in certain regimes. Above this threshold, we show that any partition of the nodes into $q$ groups which is as `good as the planted one, in terms of the number of within- and between-group edges, is correlated with it. This gives an exponential-time algorithm that performs better than chance; specifically, community detection becomes possible below the Kesten-Stigum bound for $q ge 5$ in the disassortative case $lambda < 0$, and for $q ge 11$ in the assortative case $lambda >0$ (similar upper bounds were obtained independently by Abbe and Sandon). Conversely, below this threshold, we show that no algorithm can label the vertices better than chance, or even distinguish the block model from an ER random graph with high probability. Our lower bound on $d_text{c}$ uses Robinson and Wormalds small subgraph conditioning method, and we also give (less explicit) results for non-symmetric stochastic block models. In the symmetric case, we obtain explicit results by using bounds on certain functions of doubly stochastic matrices due to Achlioptas and Naor; indeed, our lower bound on $d_text{c}$ is their second moment lower bound on the $q$-colorability threshold for random graphs with a certain effective degree.
We give upper and lower bounds on the information-theoretic threshold for community detection in the stochastic block model. Specifically, let $k$ be the number of groups, $d$ be the average degree, the probability of edges between vertices within an
We consider the community detection problem in sparse random hypergraphs. Angelini et al. (2015) conjectured the existence of a sharp threshold on model parameters for community detection in sparse hypergraphs generated by a hypergraph stochastic blo
In the group testing problem we aim to identify a small number of infected individuals within a large population. We avail ourselves to a procedure that can test a group of multiple individuals, with the test result coming out positive iff at least o
In this paper, we study the information theoretic bounds for exact recovery in sub-hypergraph models for community detection. We define a general model called the $m-$uniform sub-hypergraph stochastic block model ($m-$ShSBM). Under the $m-$ShSBM, we
Vindicating a sophisticated but non-rigorous physics approach called the cavity method, we establish a formula for the mutual information in statistical inference problems induced by random graphs and we show that the mutual information holds the key