ترغب بنشر مسار تعليمي؟ اضغط هنا

Quadrupole Splittings in the near-infrared spectrum of $^{14}$NH$_3$

354   0   0.0 ( 0 )
 نشر من قبل Trevor Sears
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Sub-Doppler, saturation dip, spectra of lines in the $v_1 + v_3$, $v_1 + 2v_4$ and $v_3 + 2v_4$ bands of $^{14}$NH$_3$ have been measured by frequency comb-referenced diode laser absorption spectroscopy. The observed spectral line widths are dominated by transit time broadening, but show resolved or partially-resolved hyperfine splittings that are primarily determined by the $^{14}$N quadrupole coupling. Modeling of the observed line shapes based on the known hyperfine level structure of the ground state of the molecule shows that, in nearly all cases, the excited state level has hyperfine splittings similar to the same rotational level in the ground state. The data provide accurate frequencies for the line positions and easily separate lines overlapped in Doppler-limited spectra. The observed hyperfine splittings can be used to make and confirm rotational assignments and ground state combination differences obtained from the measured frequencies are comparable in accuracy to those obtained from conventional microwave spectroscopy. One upper state level shows very clear differences from the expected splittings. Examination of the known vibration-rotation level structure shows there is a near degeneracy between this level in $v_1+v_3$ and a rotational level in the $v_1 + 2v_4$ manifold which is of the appropriate symmetry to be mixed by magnetic hyperfine terms that couple ortho- and para- forms of the molecule.



قيم البحث

اقرأ أيضاً

Transient diode laser absorption spectroscopy has been used to measure three strong vibronic bands in the near infrared spectrum of the C$_2$H, ethynyl, radical not previously observed in the gas phase. The radical was produced by ultraviolet excimer laser photolysis of either acetylene or (1,1,1)-trifluoropropyne in a slowly flowing sample of the precursor diluted in inert gas, and the spectral resolution was Doppler-limited. The character of the upper states was determined from the rotational and fine structure in the observed spectra and assigned by measurement of ground state rotational combination differences. The upper states include a $^2Sigma ^+$ state at 6696 cm$^{-1}$, a second $^2Sigma ^+$ state at 7088 cm$^{-1}$, and a $^2Pi$ state at 7110 cm$^{-1}$. By comparison with published calculations (R. Tarroni and S. Carter, textit{J. Chem. Phys} textbf{119}, 12878 (2003) and textit{Mol. Phys}. textbf{102}, 2167 (2004)), the vibronic character of these levels was also assigned. The observed states contain both $X^2Sigma^+$ and $A^2Pi$ electronic character. Several local rotational level perturbations were observed in the excited states. Kinetic measurements of the time-evolution of the ground state populations following collisional relaxation and reactive loss of the radicals formed in a hot, non-thermal, population distribution were made using some of the strong rotational lines observed. The case of C$ _{2} $H may be a good place to investigate the behavior at intermediate pressures of inert colliders, where the competition between relaxation and reaction can be tuned and observed to compare with master equation models, rather than deliberately suppressed to measure thermal rate constants.
We theoretically study slow collisions of NH$_3$ molecules with He atoms, where we focus in particular on the observation of scattering resonances. We calculate state-to-state integral and differential cross sections for collision energies ranging fr om 10${}^{-4}$ cm$^{-1}$ to 130 cm$^{-1}$, using fully converged quantum close-coupling calculations. To describe the interaction between the NH${}_3$ molecules and the He atoms, we present a four-dimensional potential energy surface, based on an accurate fit of 4180 {it ab initio} points. Prior to collision, we consider the ammonia molecules to be in their antisymmetric umbrella state with angular momentum $j=1$ and projection $k=1$, which is a suitable state for Stark deceleration. We find pronounced shape and Feshbach resonances, especially for inelastic collisions into the symmetric umbrella state with $j=k=1$. We analyze the observed resonant structures in detail by looking at scattering wavefunctions, phase shifts, and lifetimes. Finally, we discuss the prospects for observing the predicted scattering resonances in future crossed molecular beam experiments with a Stark-decelerated NH$_3$ beam.
We present state-selective measurements on the NH$_2^{+}$ + H$^{+}$ and NH$^{+}$ + H$^{+}$ + H dissociation channels following single-photon double ionization at 61.5 eV of neutral NH$_{3}$, where the two photoelectrons and two cations are measured i n coincidence using 3-D momentum imaging. Three dication electronic states are identified to contribute to the NH$_2^{+}$ + H$^{+}$ dissociation channel, where the excitation in one of the three states undergoes intersystem crossing prior to dissociation, producing a cold NH$_2^+$ fragment. In contrast, the other two states directly dissociate, producing a ro-vibrationally excited NH$_2^+$ fragment with roughly 1 eV of internal energy. The NH$^{+}$ + H$^{+}$ + H channel is fed by direct dissociation from three intermediate dication states, one of which is shared with the NH$_2^{+}$ + H$^{+}$ channel. We find evidence of autoionization contributing to each of the double ionization channels. The distributions of the relative emission angle between the two photoelectrons, as well as the relative angle between the recoil axis of the molecular breakup and the polarization vector of the ionizing field, are also presented to provide insight on both the photoionization and photodissociation mechanisms for the different dication states.
Density functional methods have been applied to calculate the quadrupole splitting of a series of iron(II) spin crossover complexes. Experimental and calculated values are in reasonable agreement. In one case spin-orbit coupling is necessary to expla in the very small quadrupole splitting value of 0.77 mm/s at 293 K for a high-spin isomer.
Two isotopic chemical reactions, $mathrm{Ne}^*$ + NH$_3$, and $mathrm{Ne}^*$ + ND$_3$, have been studied at low collision energies by means of a merged beams technique. Partial cross sections have been recorded for the two reactive channels, namely $ mathrm{Ne}^*$ + NH$_3$ $rightarrow$ Ne + NH$_3^+$ + $e^-$, and $mathrm{Ne}^*$ + NH$_3$ $rightarrow$ Ne + NH$_2^+$ + H + $e^-$, by detecting the NH$_3^+$ and NH$_2^+$ product ions, respectively. The cross sections for both reactions were found to increase with decreasing collision energy, $E_{coll}$, in the range 8 $mu$eV$<E_{coll}<$ 20 meV. The measured rate constant exhibits a curvature in a log(k)-log($E_{coll}$) plot from which it is concluded that the Langevin capture model does not properly describe the $mathrm{Ne}^*$ + NH$_3$ reaction in the entire range of collision energies covered here. Calculations based on multichannel quantum defect theory were performed to reproduce and interpret the experimental results. Good agreement was obtained by including long range van der Waals interactions combined with a 6-12 Lennard-Jones potential. The branching ratio between the two reactive channels, $Gamma = frac{[NH_2^+]}{[NH_2^+]+[NH_3^+]}$, is relatively constant, $Gammaapprox 0.3$, in the entire collision energy range studied here. Possible reasons for this observation are discussed and rationalised in terms of relative time scales of the reactant approach and the molecular rotation. Isotopic differences between the $mathrm{Ne}^*$ + NH$_3$ and $mathrm{Ne}^*$ + ND$_3$ reactions are small, as suggested by nearly equal branching ratios and cross sections for the two reactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا