ﻻ يوجد ملخص باللغة العربية
Discovery of exotic phases of matter from the topologically non-trivial systems not only makes the research on topological materials more interesting but also enriches our understanding of the fascinating physics of such materials. Pb$_{0.6}$Sn$_{0.4}$Te was recently shown to be a topological crystalline insulator. Here we show that by forming a mesoscopic point-contact using a normal non-superconducting elemental metal on the surface of Pb$_{0.6}$Sn$_{0.4}$Te a novel superconducting phase is created locally in a confined region under the point-contact. This happens while the bulk of the sample remains to be non-superconducting and the superconducting phase emerges as a nano-droplet under the point-contact. The superconducting phase shows a high transition temperature $T_c$ that varies for different point-contacts and falls in a range between 3.7 K and 6.5 K. Therefore, this Letter presents the discovery of a new superconducting phase on the surface of a topological crystalline insulator and the discovery is expected to shed light on the mechanism of induced superconductivity in topologically non-trivial systems in general.
Indium substitution turns the topological crystalline insulator (TCI) Pb$_{0.5}$Sn$_{0.5}$Te into a possible topological superconductor. To investigate the effect of the indium concentration on the crystal structure and superconducting properties of
We present a neutron scattering study of phonons in single crystals of (Pb$_{0.5}$Sn$_{0.5}$)$_{1-x}$In$_x$Te with $x=0$ (metallic, but nonsuperconducting) and $x=0.2$ (nonmetallic normal state, but superconducting). We map the phonon dispersions (mo
We present inelastic neutron scattering results of phonons in (Pb$_{0.5}$Sn$_{0.5}$)$_{1-x}$In$_x$Te powders, with $x=0$ and 0.3. The $x=0$ sample is a topological crystalline insulator, and the $x=0.3$ sample is a superconductor with a bulk supercon
We study Fe$_{1+y}$Te$_{0.6}$Se$_{0.4}$ multi-band superconductor with $T_c=14$K by polarization-resolved Raman spectroscopy. Deep in the superconducting state, we detect pair-breaking excitation at 45cm$^{-1}$ ($2Delta=5.6$meV) in the $XY$($B_{2g}$)
We devise a new proximity junction configuration where an s-wave superconductivity and the superconductivity of Sr2RuO4 interfere with each other. We reproducibly observe in such a Pb/Ru/Sr2RuO4 junction with a single Pb electrode that the critical c