ترغب بنشر مسار تعليمي؟ اضغط هنا

Ion-Acoustic Envelope Modes in a Degenerate Relativistic Electron-Ion Plasma

96   0   0.0 ( 0 )
 نشر من قبل Ioannis Kourakis
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A self-consistent relativistic two-fluid model is proposed for one-dimensional electron-ion plasma dynamics. A multiple scales perturbation technique is employed, leading to an evolution equation for the wave envelope, in the form of a nonlinear Schrodinger type equation (NLSE). The inclusion of relativistic effects is shown to introduce density-dependent factors, not present in the non-relativistic case - in the conditions for modulational instability. The role of relativistic effects on the linear dispersion laws and on envelope soliton solutions of the NLSE is discussed.

قيم البحث

اقرأ أيضاً

A theoretical investigation has been carried out to examine the ion-acoustic shock waves (IASHWs) in a magnetized degenerate quantum plasma system containing inertialess ultra-relativistically degenerate electrons, and inertial non-relativistic posit ively charged heavy and light ions. The Burgers equation is derived by employing reductive perturbation method. It can be seen that under consideration of non-relativistic positively charged heavy and light ions, the plasma model supports only positive electrostatic shock structure. It is also observed that the charge state and number density of the non-relativistic heavy and light ions enhance the amplitude of IASHWs, and the steepness of the shock profile is decreased with ion kinematic viscosity ($eta$). The findings of our present investigation will be helpful in understanding the nonlinear propagation of IASHWs in white dwarfs and neutron stars.
A generalized plasma model having warm ions, iso-thermal electrons, super-thermal electrons and positrons is considered to theoretically investigate the modulational instability (MI) of ion-acoustic waves (IAWs). A standard nonlinear Schr{o}dinger eq uation is derived by applying reductive perturbation method to study the MI of IAWs. It is observed that the MI criteria of the IAWs are significantly modified by various plasma parameters. The present results should be useful in understanding the conditions for MI of IAWs which are relevant to both space and laboratory plasma system.
In steady state, the fuel cycle of a fusion plasma requires inward particle fluxes of fuel ions. These particle flows are also accompanied by heating. In the case of classical transport in a rotating cylindrical plasma, this heating can proceed throu gh several distinct channels depending on the physical mechanisms involved. Some channels directly heat the fuel ions themselves, whereas others heat electrons. Which channel dominates depends, in general, on the details of the temperature, density, and rotation profiles of the plasma constituents. However, remarkably, under relatively few assumptions concerning these profiles, if the alpha particles, the byproducts of the fusion reaction, can be removed directly by other means, a hot-ion mode tends to emerge naturally.
115 - Yu. V. Medvedev 2017
The head-on collision of ion-acoustic solitary waves in a collisionless plasma with cold ions and Boltzmann electrons is studied. It is shown that solitary waves of sufficiently large amplitudes do not retain their identity after a collision. Their a mplitudes decrease and their forms change. Dependences of amplitudes of the potential and densities of ions and electrons after a head-on collision of identical solitary waves on their initial amplitude are presented.
The modulational instability (MI) criteria of dust-ion-acoustic (DIA) waves (DIAWs) have been investigated in a four-component pair-ion plasma having inertial pair-ions, inertialess non-thermal non-extensive electrons, and immobile negatively charged massive dust grains. A nonlinear Schr{o}dinger equation (NLSE) is derived by using reductive perturbation method. The nonlinear and dispersive coefficients of the NLSE can predict the modulationally stable and unstable parametric regimes of DIAWs and associated first and second order DIA rogue waves (DIARWs). The MI growth rate and the configuration of the DIARWs are examined, and it is found that the MI growth rate increases (decreases) with increasing the number density of the negatively charged dust grains in the presence (absence) of the negative ions. It is also observed that the amplitude and width of the DIARWs increase (decrease) with the negative (positive) ion mass. The implications of the results to laboratory and space plasmas are briefly discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا