ترغب بنشر مسار تعليمي؟ اضغط هنا

Moduli of $G_2$ structures and the Strominger system in dimension 7

153   0   0.0 ( 0 )
 نشر من قبل Carl Tipler
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider $G_2$ structures with torsion coupled with $G_2$-instantons, on a compact $7$-dimensional manifold. The coupling is via an equation for $4$-forms which appears in supergravity and generalized geometry, known as the Bianchi identity. The resulting system of partial differential equations can be regarded as an analogue of the Strominger system in $7$-dimensions. We initiate the study of the moduli space of solutions and show that it is finite dimensional using elliptic operator theory. We also relate the associated geometric structures to generalized geometry.



قيم البحث

اقرأ أيضاً

We consider $G_2$-structures with torsion coupled with $G_2$-instantons, on a compact $7$-dimensional manifold. The coupling is via an equation for $4$-forms which appears in supergravity and generalized geometry, known as the Bianchi identity. First studied by Friedrich and Ivanov, the resulting system of partial differential equations describes compactifications of the heterotic string to three dimensions, and is often referred to as the $G_2$-Strominger system. We study the moduli space of solutions and prove that the space of infinitesimal deformations, modulo automorphisms, is finite dimensional. We also provide a new family of solutions to this system, on $T^3$-bundles over $K3$ surfaces and for infinitely many different instanton bundles, adapting a construction of Fu-Yau and the second named author. In particular, we exhibit the first examples of $T$-dual solutions for this system of equations.
We describe the $10$-dimensional space of $Sp(2)$-invariant $G_2$-structures on the homogeneous $7$-sphere $S^7=Sp(2)/Sp(1)$ as $mathbb{R}^+times Gl^+(3,mathbb{R})$. In those terms, we formulate a general Ansatz for $G_2$-structures, which realises r epresentatives in each of the $7$ possible isometric classes of homogeneous $G_2$-structures. Moreover, the well-known nearly parallel round and squashed metrics occur naturally as opposite poles in an $S^3$-family, the equator of which is a new $S^2$-family of coclosed $G_2$-structures satisfying the harmonicity condition $div T=0$. We show general existence of harmonic representatives of $G_2$-structures in each isometric class through explicit solutions of the associated flow and describe the qualitative behaviour of the flow. We study the stability of the Dirichlet gradient flow near these critical points, showing explicit examples of degenerate and nondegenerate local maxima and minima, at various regimes of the general Ansatz. Finally, for metrics outside of the Ansatz, we identify families of harmonic $G_2$-structures, prove long-time existence of the flow and study the stability properties of some well-chosen examples.
We construct new smooth solutions to the Hull-Strominger system, showing that the Fu-Yau solution on torus bundles over K3 surfaces can be generalized to torus bundles over K3 orbifolds. In particular, we prove that, for $13 leq k leq 22$ and $14leq rleq 22$, the smooth manifolds $S^1times sharp_k(S^2times S^3)$ and $sharp_r (S^2 times S^4) sharp_{r+1} (S^3 times S^3)$, have a complex structure with trivial canonical bundle and admit a solution to the Hull-Strominger system.
We construct new examples of solutions of the Hull-Strominger system on non-Kahler torus bundles over K3 surfaces, with the property that the connection $ abla$ on the tangent bundle is Hermite-Yang-Mills. With this ansatz for the connection $ abla$, we show that the existence of solutions reduces to known results about moduli spaces of slope-stable sheaves on a K3 surface, combined with elementary analytical methods. We apply our construction to find the first examples of T-dual solutions of the Hull-Strominger system on compact non-Kahler manifolds with different topology.
It is shown that the heat operator in the Hall coherent state transform for a compact Lie group $K$ is related with a Hermitian connection associated to a natural one-parameter family of complex structures on $T^*K$. The unitary parallel transport of this connection establishes the equivalence of (geometric) quantizations of $T^*K$ for different choices of complex structures within the given family. In particular, these results establish a link between coherent state transforms for Lie groups and results of Hitchin and Axelrod, Della Pietra and Witten.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا