ﻻ يوجد ملخص باللغة العربية
We consider $G_2$ structures with torsion coupled with $G_2$-instantons, on a compact $7$-dimensional manifold. The coupling is via an equation for $4$-forms which appears in supergravity and generalized geometry, known as the Bianchi identity. The resulting system of partial differential equations can be regarded as an analogue of the Strominger system in $7$-dimensions. We initiate the study of the moduli space of solutions and show that it is finite dimensional using elliptic operator theory. We also relate the associated geometric structures to generalized geometry.
We consider $G_2$-structures with torsion coupled with $G_2$-instantons, on a compact $7$-dimensional manifold. The coupling is via an equation for $4$-forms which appears in supergravity and generalized geometry, known as the Bianchi identity. First
We describe the $10$-dimensional space of $Sp(2)$-invariant $G_2$-structures on the homogeneous $7$-sphere $S^7=Sp(2)/Sp(1)$ as $mathbb{R}^+times Gl^+(3,mathbb{R})$. In those terms, we formulate a general Ansatz for $G_2$-structures, which realises r
We construct new smooth solutions to the Hull-Strominger system, showing that the Fu-Yau solution on torus bundles over K3 surfaces can be generalized to torus bundles over K3 orbifolds. In particular, we prove that, for $13 leq k leq 22$ and $14leq
We construct new examples of solutions of the Hull-Strominger system on non-Kahler torus bundles over K3 surfaces, with the property that the connection $ abla$ on the tangent bundle is Hermite-Yang-Mills. With this ansatz for the connection $ abla$,
It is shown that the heat operator in the Hall coherent state transform for a compact Lie group $K$ is related with a Hermitian connection associated to a natural one-parameter family of complex structures on $T^*K$. The unitary parallel transport of