ﻻ يوجد ملخص باللغة العربية
We study the interaction of the early spherical GC wind powered by Type II supernovae (SNe II) with the surrounding ambient medium consisting of the gaseous disk of a star forming galaxy at redshift z ~> 2. The bubble formed by the wind eventually breaks out of the disk, and most of the wind moves directly out of the galaxy and is definitively lost. The fraction of the wind moving nearly parallel to the galactic plane carves a hole in the disk which will contract after the end of the SN activity. During the interval of time between the end of the SN explosions and the closure of the hole, very O-poor stars (the Extreme population) can form out of the super-AGB (asymptotic giant branch) ejecta collected in the GC center. Once the hole contracts, the AGB ejecta mix with the pristine gas, allowing the formation of stars with an oxygen abundance intermediate between that of the very O-poor stars and that of the pristine gas. We show that this mechanism may explain why Extreme populations are present only in massive clusters, and can also produce a correlation between the spread in helium and the cluster mass. Finally, we also explore the possibility that our proposed mechanism can be extended to the case of multiple populations showing bimodality in the iron content, with the presence of two populations characterized by a small difference in [Fe/H]. Such a result can be obtained taking into account the contribution of delayed SN II.
We have carried out a set of Monte Carlo simulations to study a number of fundamental aspects of the dynamical evolution of multiple stellar populations in globular clusters with different initial masses, fractions of second generation (2G) stars, an
In this paper we study the long-term dynamical evolution of multiple-population clusters, focusing on the evolution of the spatial distributions of the first- (FG) and second-generation (SG) stars.In previous studies we have suggested that SG stars f
We present the results of a study aimed at investigating the effects of dynamical evolution on the spatial distribution and mixing of primordial binary stars in multiple-population globular clusters. Multiple stellar population formation models pre
The formation histories of globular clusters (GCs) are a key diagnostic for understanding their relation to the evolution of the Universe through cosmic time. We use the suite of 25 cosmological zoom-in simulations of present-day Milky Way-mass galax
Cosmological numerical simulations of galaxy evolution show that accretion of metal-poor gas from the cosmic web drives the star formation in galaxy disks. Unfortunately, the observational support for this theoretical prediction is still indirect, an