ﻻ يوجد ملخص باللغة العربية
We present EVEREST, an open-source pipeline for removing instrumental noise from K2 light curves. EVEREST employs a variant of pixel level decorrelation (PLD) to remove systematics introduced by the spacecrafts pointing error and a Gaussian process (GP) to capture astrophysical variability. We apply EVEREST to all K2 targets in campaigns 0-7, yielding light curves with precision comparable to that of the original Kepler mission for stars brighter than $K_p approx 13$, and within a factor of two of the Kepler precision for fainter targets. We perform cross-validation and transit injection and recovery tests to validate the pipeline, and compare our light curves to the other de-trended light curves available for download at the MAST High Level Science Products archive. We find that EVEREST achieves the highest average precision of any of these pipelines for unsaturated K2 stars. The improved precision of these light curves will aid in exoplanet detection and characterization, investigations of stellar variability, asteroseismology, and other photometric studies. The EVEREST pipeline can also easily be applied to future surveys, such as the TESS mission, to correct for instrumental systematics and enable the detection of low signal-to-noise transiting exoplanets. The EVEREST light curves and the source code used to generate them are freely available online.
Microlens parallax measurements combining space-based and ground-based observatories can be used to study planetary demographics. In recent years, the Spitzer Space Telescope was used as a microlens parallax satellite. Meanwhile, textit{Spitzer} IRAC
Here we present the results of visible range light curve observations of ten Centaurs using the Kepler Space Telescope in the framework of the K2 mission. Well defined periodic light curves are obtained in six cases allowing us to derive rotational p
Due to the failure of the second reaction wheel, a new mission was conceived for the otherwise healthy Kepler space telescope. In the course of the K2 Mission, the telescope is staring at the plane of the Ecliptic, hence thousands of Solar System bod
From 1996 to 2015 sixteen main belt asteroids were discovered exhibiting cometary activity (less than one per year), all of them during searches at the telescope. In this work we will explore another way to discover them. We reduced 192016 magnitude
Instrumental data are affected by systematic effects that dominate the errors and can be relevant when searching for small signals. This is the case of the K2 mission, a follow up of the Kepler mission, that, after a failure on two reaction wheels, h