ترغب بنشر مسار تعليمي؟ اضغط هنا

The Multiple Quantile Graphical Model

216   0   0.0 ( 0 )
 نشر من قبل Alnur Ali
 تاريخ النشر 2016
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce the Multiple Quantile Graphical Model (MQGM), which extends the neighborhood selection approach of Meinshausen and Buhlmann for learning sparse graphical models. The latter is defined by the basic subproblem of modeling the conditional mean of one variable as a sparse function of all others. Our approach models a set of conditional quantiles of one variable as a sparse function of all others, and hence offers a much richer, more expressive class of conditional distribution estimates. We establish that, under suitable regularity conditions, the MQGM identifies the exact conditional independencies with probability tending to one as the problem size grows, even outside of the usual homoskedastic Gaussian data model. We develop an efficient algorithm for fitting the MQGM using the alternating direction method of multipliers. We also describe a strategy for sampling from the joint distribution that underlies the MQGM estimate. Lastly, we present detailed experiments that demonstrate the flexibility and effectiveness of the MQGM in modeling hetereoskedastic non-Gaussian data.

قيم البحث

اقرأ أيضاً

Graphical models are ubiquitous tools to describe the interdependence between variables measured simultaneously such as large-scale gene or protein expression data. Gaussian graphical models (GGMs) are well-established tools for probabilistic explora tion of dependence structures using precision matrices and they are generated under a multivariate normal joint distribution. However, they suffer from several shortcomings since they are based on Gaussian distribution assumptions. In this article, we propose a Bayesian quantile based approach for sparse estimation of graphs. We demonstrate that the resulting graph estimation is robust to outliers and applicable under general distributional assumptions. Furthermore, we develop efficient variational Bayes approximations to scale the methods for large data sets. Our methods are applied to a novel cancer proteomics data dataset wherein multiple proteomic antibodies are simultaneously assessed on tumor samples using reverse-phase protein arrays (RPPA) technology.
101 - Bruno Santos , Thomas Kneib 2019
Quantile regression models are a powerful tool for studying different points of the conditional distribution of univariate response variables. Their multivariate counterpart extension though is not straightforward, starting with the definition of mul tivariate quantiles. We propose here a flexible Bayesian quantile regression model when the response variable is multivariate, where we are able to define a structured additive framework for all predictor variables. We build on previous ideas considering a directional approach to define the quantiles of a response variable with multiple-outputs and we define noncrossing quantiles in every directional quantile model. We define a Markov Chain Monte Carlo (MCMC) procedure for model estimation, where the noncrossing property is obtained considering a Gaussian process design to model the correlation between several quantile regression models. We illustrate the results of these models using two data sets: one on dimensions of inequality in the population, such as income and health; the second on scores of students in the Brazilian High School National Exam, considering three dimensions for the response variable.
Although multivariate count data are routinely collected in many application areas, there is surprisingly little work developing flexible models for characterizing their dependence structure. This is particularly true when interest focuses on inferri ng the conditional independence graph. In this article, we propose a new class of pairwise Markov random field-type models for the joint distribution of a multivariate count vector. By employing a novel type of transformation, we avoid restricting to non-negative dependence structures or inducing other restrictions through truncations. Taking a Bayesian approach to inference, we choose a Dirichlet process prior for the distribution of a random effect to induce great flexibility in the specification. An efficient Markov chain Monte Carlo (MCMC) algorithm is developed for posterior computation. We prove various theoretical properties, including posterior consistency, and show that our COunt Nonparametric Graphical Analysis (CONGA) approach has good performance relative to competitors in simulation studies. The methods are motivated by an application to neuron spike count data in mice.
A framework is presented to model instances and degrees of local item dependence within the context of diagnostic classification models (DCMs). The study considers an undirected graphical model to describe dependent structure of test items and draws inference based on pseudo-likelihood. The new modeling framework explicitly addresses item interactions beyond those explained by latent classes and thus is more flexible and robust against the violation of local independence. It also facilitates concise interpretation of item relations by regulating complexity of a network underlying the test items. The viability and effectiveness are demonstrated via simulation and a real data example. Results from the simulation study suggest that the proposed methods adequately recover the model parameters in the presence of locally dependent items and lead to a substantial improvement in estimation accuracy compared to the standard DCM approach. The analysis of real data demonstrates that the graphical DCM provides a useful summary of item interactions in regards to the existence and extent of local dependence.
204 - Miaomiao Wang , Guohua Zou 2019
Model averaging considers the model uncertainty and is an alternative to model selection. In this paper, we propose a frequentist model averaging estimator for composite quantile regressions. In recent years, research on these topics has been added a s a separate method, but no study has investigated them in combination. We apply a delete-one cross-validation method to estimate the model weights, and prove that the jackknife model averaging estimator is asymptotically optimal in terms of minimizing out-of-sample composite final prediction error. Simulations are conducted to demonstrate the good finite sample properties of our estimator and compare it with commonly used model selection and averaging methods. The proposed method is applied to the analysis of the stock returns data and the wage data and performs well.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا