ترغب بنشر مسار تعليمي؟ اضغط هنا

Rotationally-Driven Fragmentation for the Formation of the Binary Protostellar System L1551 IRS 5

233   0   0.0 ( 0 )
 نشر من قبل Paul Yeung
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Either bulk rotation or local turbulence is widely invoked to drive fragmentation in collapsing cores so as to produce multiple star systems. Even when the two mechanisms predict different manners in which the stellar spins and orbits are aligned, subsequent internal or external interactions can drive multiple systems towards or away from alignment thus masking their formation process. Here, we demonstrate that the geometrical and dynamical relationship between the binary system and its surrounding bulk envelope provide the crucial distinction between fragmentation models. We find that the circumstellar disks of the binary protostellar system L1551 IRS 5 are closely parallel not just with each other but also with their surrounding flattened envelope. Measurements of the relative proper motion of the binary components spanning nearly 30 yr indicate an orbital motion in the same sense as the envelope rotation. Eliminating orbital solutions whereby the circumstellar disks would be tidally truncated to sizes smaller than are observed, the remaining solutions favor a circular or low-eccentricity orbit tilted by up to $sim$25$^circ$ from the circumstellar disks. Turbulence-driven fragmentation can generate local angular momentum to produce a coplanar binary system, but which bears no particular relationship with its surrounding envelope. Instead, the observed properties conform with predictions for rotationally-driven fragmentation. If the fragments were produced at different heights or on opposite sides of the midplane in the flattened central region of a rotating core, the resulting protostars would then exhibit circumstellar disks parallel with the surrounding envelope but tilted from the orbital plane as is observed.



قيم البحث

اقرأ أيضاً

We present observations at 7 mm that fully resolve the two circumstellar disks, and a reanalyses of archival observations at 3.5 cm that resolve along their major axes the two ionized jets, of the class I binary protostellar system L1551 NE. We show that the two circumstellar disks are better fit by a shallow inner and steep outer power-law than a truncated power-law. The two disks have very different transition radii between their inner and outer regions of $sim$18.6 AU and $sim$8.9 AU respectively. Assuming that they are intrinsically circular and geometrically thin, we find that the two circumstellar disks are parallel with each other and orthogonal in projection to their respective ionized jets. Furthermore, the two disks are closely aligned if not parallel with their circumbinary disk. Over an interval of $sim$10 yr, source B (possessing the circumsecondary disk) has moved northwards with respect to and likely away from source A, indicating an orbital motion in the same direction as the rotational motion of their circumbinary disk. All the aforementioned elements therefore share the same axis for their angular momentum, indicating that L1551 NE is a product of rotationally-driven fragmentation of its parental core. Assuming a circular orbit, the relative disk sizes are compatible with theoretical predictions for tidal truncation by a binary system having a mass ratio of $sim$0.2, in agreement with the reported relative separations of the two protostars from the center of their circumbinary disk. The transition radii of both disks, however, are a factor of $gtrsim$1.5 smaller than their predicted tidally-truncated radii.
242 - M. Osorio 2002
We model the Class I source L1551 IRS 5, adopting a flattened infalling envelope surrounding a binary disk system and a circumbinary disk. With our composite model, we calculate self-consistently the spectral energy distribution of each component of the L1551 IRS 5 system, using additional constraints from recent observations by ISO, the water ice feature from observations with SpeX, the SCUBA extended spatial brightness distribution at sub-mm wavelengths, and the VLA spatial intensity distributions at 7 mm of the binary disks. We analyze the sensitivity of our results to the various parameters involved. Our results show that a flattened envelope collapse model is required to explain simultaneously the large scale fluxes and the water ice and silicate features. On the other hand, we find that the circumstellar disks are optically thick in the millimeter range and are inclined so that their outer parts hide the emission along the line of sight from their inner parts. We also find that these disks have lower mass accretion rates than the infall rate of the envelope.
We analyzed high angular resolution observations of the Very Large Array archive at a wavelength of 7 mm of the L1551 IRS 5 binary system. Six sets of observations,five with the A configuration and one with the B configuration, were used, covering a time span of about 15 years. With these multi-epoch data, we estimated the absolute and relative proper motions of the binary system, which are about 25.1 mas/yr (~ 16.7 km/s considering a distance of 140 pc) and 4.2 mas/yr, respectively. Finally, based on the relative proper motion, we estimated a total mass of the L1551 IRS 5 binary system of 1.7 Msun and an orbital period of 246 years.
We report ALMA Cycle 4 observations of the Class I binary protostellar system L1551 IRS 5 in the 0.9-mm continuum emission, C18O (J=3-2), OCS (J=28-27), and four other Band 7 lines. At ~0.07 (= 10 au) resolution in the 0.9 mm emission, two circumstel lar disks (CSDs) associated with the binary protostars are separated from the circumbinary disk (CBD). The CBD is resolved into two spiral arms, one connecting to the CSD around the northern binary source, Source N, and the other to Source S. As compared to the CBD in the neighboring protobinary system L1551 NE, the CBD in L1551 IRS 5 is more compact (r ~150 au) and the m=1 mode of the spirals found in L1551 NE is less obvious in L1551 IRS 5. Furthermore, the dust and molecular-line brightness temperatures of CSDs and CBD reach >260 K and >100 K, respectively, in L1551 IRS 5, much hotter than those in L1551 NE. The gas motions in the spiral arms are characterized by rotation and expansion. Furthermore, the transitions from the CBD to the CSD rotations at around the L2 and L3 Lagrangian points and gas motions around the L1 point are identified. Our numerical simulations reproduce the observed two spiral arms and expanding gas motion as a result of gravitational torques from the binary, transitions from the CBD to the CSD rotations, and the gas motion around the L1 point. The higher temperature in L1551 IRS 5 likely reflects the inferred FU-Ori event.
We report the ALMA observation of the Class I binary protostellar system L1551 NE in the 0.9-mm continuum, C18O (3-2), and 13CO (3-2) lines at a ~1.6 times higher resolution and a ~6 times higher sensitivity than those of our previous SMA observation s, which revealed a r ~300 AU-scale circumbinary disk in Keplerian rotation. The 0.9-mm continuum shows two opposing U-shaped brightenings in the circumbinary disk, and exhibits a depression between the circumbinary disk and the circumstellar disk of the primary protostar. The molecular lines trace non-axisymmetric deviations from Keplerian rotation in the circumbinary disk at higher velocities relative to the systemic velocity, where our previous SMA observations could not detect the lines. In addition, we detect inward motion along the minor axis of the circumbinary disk. To explain the newly-observed features, we performed a numerical simulation of gas orbits in a Roche potential tailored to the inferred properties of L1551 NE. The observed U-shaped dust features coincide with locations where gravitational torques from the central binary system are predicted to impart angular momentum to the circumbinary disk, producing shocks and hence density enhancements seen as a pair of spiral arms. The observed inward gas motion coincides with locations where angular momentum is predicted to be lowered by the gravitational torques. The good agreement between our observation and model indicates that gravitational torques from the binary stars constitute the primary driver for exchanging angular momentum so as to permit infall through the circumbinary disk of L1551 NE.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا