ﻻ يوجد ملخص باللغة العربية
Would a raindrop impacting on a coarse beach behave differently from that impacting on a desert of fine sand? We study this question by a series of model experiments, where the packing density of the granular target, the wettability of individual grains, the grain size, the impacting liquid, and the impact speed are varied. We find that by increasing the grain size and/or the wettability of individual grains the maximum droplet spreading undergoes a transition from a capillary regime towards a viscous regime, and splashing is suppressed. The liquid-grain mixing is discovered to be the underlying mechanism. An effective viscosity is defined accordingly to quantitatively explain the observations.
How does the impact of a deformable droplet on a granular bed differ from that caused by a solid impactor of similar size and density? Here, we experimentally study this question and focus on the effect of intruder deformability on the crater shape.
The design of artificial microswimmers is often inspired by the strategies of natural microorganisms. Many of these creatures exploit the fact that elasticity breaks the time-reversal symmetry of motion at low Reynolds numbers, but this principle has
The propulsion of a liquid indium-tin micro-droplet by nanosecond-pulse laser impact is experimentally investigated. We capture the physics of the droplet propulsion in a scaling law that accurately describes the plasma-imparted momentum transfer, en
Electrowetting on dielectric (EWOD) has emerged as a powerful tool to electrically manipulate tiny individual droplets in a controlled manner. Despite tremendous progress over the past two decades, current EWOD operating in ambient conditions has lim
We investigate the collective motion of magnetic rotors suspended in a viscous fluid under an uniform rotating magnetic field. The rotors are positioned on a square lattice, and low Reynolds hydrodynamics is assumed. For a $3 times 3$ array of magnet