ترغب بنشر مسار تعليمي؟ اضغط هنا

On entropy production of repeated quantum measurements I. General theory

71   0   0.0 ( 0 )
 نشر من قبل Tristan Benoist
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study entropy production (EP) in processes involving repeated quantum measurements of finite quantum systems. Adopting a dynamical system approach, we develop a thermodynamic formalism for the EP and study fine aspects of irreversibility related to the hypothesis testing of the arrow of time. Under a suitable chaoticity assumption, we establish a Large Deviation Principle and a Fluctuation Theorem for the EP.



قيم البحث

اقرأ أيضاً

130 - S. Attal , Y. Pautrat 2003
We consider the general physical situation of a quantum system $H_0$ interacting with a chain of exterior systems $bigotimes_N H$, one after the other, during a small interval of time $h$ and following some Hamiltonian $H$ on $H_0 otimes H$. We discu ss the passage to the limit to continuous interactions ($h to 0$) in a setup which allows to compute the limit of this Hamiltonian evolution in a single state space: a continuous field of exterior systems $otimes_{R} H$. Surprisingly, the passage to the limit shows the necessity for 3 different time scales in $H$. The limit evolution equation is shown to spontaneously produce quantum noises terms: we obtain a quantum Langevin equation as limit of the Hamiltonian evolution. For the very first time, these quantum Langevin equations are obtained as the effective limit from repeated to continuous interactions and not only as a model. These results justify the usual quantum Langevin equations considered in continual quantum measurement or in quantum optics. We show that the three time scales correspond to the normal regime, the weak coupling limit and the low density limit. Our approach allows to consider these two physical limits altogether for the first time. Their combination produces an effective Hamiltonian on the small system, which had never been described before. We apply these results to give an Hamiltonian description of the von Neumann measurement. We also consider the approximation of continuous time quantum master equations by discrete time ones. In particular we show how any Lindblad generator is obtained as the limit of completely positive maps.
We develop a martingale theory to describe fluctuations of entropy production for open quantum systems in nonequilbrium steady states. Using the formalism of quantum jump trajectories, we identify a decomposition of entropy production into an exponen tial martingale and a purely quantum term, both obeying integral fluctuation theorems. An important consequence of this approach is the derivation of a set of genuine universal results for stopping-time and infimum statistics of stochastic entropy production. Finally we complement the general formalism with numerical simulations of a qubit system.
In this paper, we consider the classical Ising model on the Cayley tree of order k and show the existence of the phase transition in the following sense: there exists two quantum Markov states which are not quasi-equivalent. It turns out that the fou nd critical temperature coincides with usual critical temperature.
We analyze the behavior of quantum dynamical entropies production from sequences of quantum approximants approaching their (chaotic) classical limit. The model of the quantized hyperbolic automorphisms of the 2-torus is examined in detail and a semi- classical analysis is performed on it using coherent states, fulfilling an appropriate dynamical localization property. Correspondence between quantum dynamical entropies and the Kolmogorov-Sinai invariant is found only over time scales that are logarithmic in the quantization parameter.
We give a generalization of the random matrix ensembles, including all lassical ensembles. Then we derive the joint density function of the generalized ensemble by one simple formula, which give a direct and unified way to compute the density functio ns for all classical ensembles and various kinds of new ensembles. An integration formula associated with the generalized ensemble is also given. We also give a classification scheme of the generalized ensembles, which will include all classical ensembles and some new ensembles which were not considered before.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا