ترغب بنشر مسار تعليمي؟ اضغط هنا

The odd-isotope fractions of Barium in CEMP-r/s star HE 0338-3945 and r-II star CS 31082-001

67   0   0.0 ( 0 )
 نشر من قبل Wenyuan Cui
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the first measurement of the odd-isotope fractions for barium, fodd, in two extremely metal-poor stars: a CEMP-r/s star he (feh,$=-2.42pm0.11$) and an r-II star cs (feh,$=-2.90pm0.13$). The measured fodd values are $0.23pm0.12$ corresponding to $34.3pm34.3$% of the r-process contributions for he and $0.43pm0.09$ corresponding to $91.4pm25.7$% of the r-process contribution to Ba production for cs. The high r-process signature of barium in cs ($91.4pm25.7%$) suggests that the majority of the heavy elements in this star were synthesised via an r-process path, while the lower r-process value ($34.3pm34.3%$) found in he indicates that the heavy elements in this star formed through a mix of s-process and r-process synthesis. These conclusions are consistent with studies based on AGB model calculations to fit their abundance distributions.

قيم البحث

اقرأ أيضاً

The very metal-poor star HE 0338-3945 shows a double-enhanced pattern of the neutron-capture elements. The study to this sample could make people gain a better understanding of s- and r-process nucleosynthesis at low metallicity. Using a parametric m odel,we find that the abundance pattern of the neutron-capture elements could be best explained by a binary system formed in a molecular cloud, which had been polluted by r-process material. The observed abundance pattern of C and N can be explained by an AGB model(Karakas & Lattanzio 2007), . Combing with the parameters obtained from Cui & Zhang (2006), we suggest that the initial mass of the AGB companion is most likely to be about 2.5Msun, which excludes the possibility of forming a type-1.5 supernova. By comparing with the observational abundance pattern of CS 22892-052, we find that the dominating production of O should accompany with the production of the heavy r-process elements of r+s stars. Similar to r-II stars, the heavy r-process elements are not produced in conjunction with all the light elements from Na to Fe group. The abundance pattern of the light and r-process elements for HE 0338-3945 is very close to the pattern of the r-II star CS 22892-052. So, we suggest that this star HE 0338-3945 should be a special r-II star.
We determined the fodd values, $0.46pm0.08$, $0.51pm0.09$, $0.50pm0.13$, $0.48pm0.12$, which correspond to the r-contribution 100% for four r-II stars, cs, hen, hes, and het, respectively. Our results suggest that almost all of the heavy elements (in the range from Ba to Pb) in r-II stars have a common origin, that is, from a single r-process (the main r-process). We found that the fodd has a intrinsic nature, and should keep constant value of about 0.46 in the main r-process yields, which is responsible for the heavy element enhancement of r-II stars and of our Galaxy chemical enhancement. In addition, except the abundance ratio [Ba/Eu] the fodd is also an important indicator, which can be used to study the relative contributions of the r- and s-process during the chemical evolution history of the Milky Way and the enhancement mechanism in stars with peculiar abundance of heavy elements.
61 - K. Jonsell 2006
We have derived abundances of 33 elements and upper limits for 6 additional elements for the metal-poor ([Fe/H] = -2.42) turn-off star HE 0338-3945 from high-quality VLT-UVES spectra. The star is heavily enriched, by about a factor of 100 relative to iron and the Sun, in the heavy s-elements (Ba, La, ..). It is also heavily enriched in Eu, which is generally considered an r-element, and in other similar elements. It is less enriched, by about a factor of 10, in the lighter s-elements (Sr, Y and Zr). C is also strongly enhanced and, to a somewhat lesser degree, N and O. These abundance estimates are subject to severe uncertainties due to NLTE and thermal inhomogeneities which are not taken into detailed consideration. However, an interesting result, which is most probably robust in spite of these uncertainties, emerges: the abundances derived for this star are very similar to those of other stars with an overall enhancement of all elements beyond the iron peak. We have defined criteria for this class of stars, r+s stars, and discuss nine different scenarios to explain their origin. None of these explanations is found to be entirely convincing. The most plausible hypotheses involve a binary system in which the primary component goes through its giant branch and asymptotic giant branch phases and produces CNO and s-elements which are dumped onto the observed star. Whether the r-element Eu is produced by supernovae before the star was formed (perhaps triggering the formation of a low-mass binary), by a companion as it explodes as a supernova (possibly triggered by mass transfer), or whether it is possibly produced in a high-neutron-density version of the s-process is still unclear. Several suggestions are made on how to clarify this situation.
In order to get a broader view of the s-process nucleosynthesis we study the abundance distribution of heavy elements of 35 barium stars and 24 CEMP-stars, including nine CEMP-s stars and 15 CEMP-r/s stars. The similar distribution of [Pb/hs] between CEMP-s and CEMP-r/s stars indicate that the s-process material of both CEMP-s and CEMP-r/s stars should have a uniform origin, i.e. mass transfer from their predominant AGB companions. For the CEMP-r/s stars, we found that the r-process should provide similar proportional contributes to the second s-peak and the third s-peak elements, and also be responsible for the higher overabundance of heavy elements than those in CEMP-s stars. Which hints that the r-process origin of CEMP-r/s stars should be closely linked to the main r-process. The fact that some small $r$ values exist for both barium and CEMP-s stars, implies that the single exposure event of the s-process nucleosynthesis should be general in a wide metallicity range of our Galaxy. Based on the relation between $C_{r}$ and $C_{s}$, we suggest that the origin of r-elements for CEMP-r/s stars have more sources. A common scenario is that the formation of the binary system was triggered by only one or a few supernova. In addition, accretion-induced collapse(AIC) or SN 1.5 should be the supplementary scenario, especially for these whose pre-AGB companion with higher mass and smaller orbit radius, which support the higher values of both $C_{r}$ and $C_{s}$.
We provide an updated discussion of the sample of CEMP-s and CEMP-s/r stars collected from the literature. Observations are compared with the theoretical nucleosynthesis models of asymptotic giant branch (AGB) stars presented by Bisterzo et al. (2010 , 2011, 2012), in the light of the most recent spectroscopic results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا