ترغب بنشر مسار تعليمي؟ اضغط هنا

The Herschel-ATLAS Data Release 1 Paper II: Multi-wavelength counterparts to submillimetre sources

83   0   0.0 ( 0 )
 نشر من قبل Nathan Bourne
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper is the second in a pair of articles presenting data release 1 (DR1) of the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS), the largest single open-time key project carried out with the Herschel Space Observatory. The H-ATLAS is a wide-area imaging survey carried out in five photometric bands at 100, 160, 250, 350 and 500$mu$m covering a total area of 600deg$^2$. In this paper we describe the identification of optical counterparts to submillimetre sources in DR1, comprising an area of 161 deg$^2$ over three equatorial fields of roughly 12$^circ$x4.5$^circ$ centred at 9$^h$, 12$^h$ and 14.5$^h$ respectively. Of all the H-ATLAS fields, the equatorial regions benefit from the greatest overlap with current multi-wavelength surveys spanning ultraviolet (UV) to mid-infrared regimes, as well as extensive spectroscopic coverage. We use a likelihood-ratio technique to identify SDSS counterparts at r<22.4 for 250-$mu$m-selected sources detected at $geq$ 4$sigma$ ($approx$28mJy). We find `reliable counterparts (reliability R$geq$0.8) for 44,835 sources (39 per cent), with an estimated completeness of 73.0 per cent and contamination rate of 4.7 per cent. Using redshifts and multi-wavelength photometry from GAMA and other public catalogues, we show that H-ATLAS-selected galaxies at $z<0.5$ span a wide range of optical colours, total infrared (IR) luminosities, and IR/UV ratios, with no strong disposition towards mid-IR-classified AGN in comparison with optical selection. The data described herein, together with all maps and catalogues described in the companion paper (Valiante et al. 2016), are available from the H-ATLAS website at www.h-atlas.org.



قيم البحث

اقرأ أيضاً

We present the first major data release of the largest single key-project in area carried out in open time with the Herschel Space Observatory. The Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) is a survey of 600 deg^2 in five photomet ric bands - 100, 160, 250, 350 and 500 um - with the PACS and SPIRE cameras. In this paper and a companion paper (Bourne et al. 2016) we present the survey of three fields on the celestial equator, covering a total area of 161.6 deg^2 and previously observed in the Galaxy and Mass Assembly (GAMA) spectroscopic survey. This paper describes the Herschel images and catalogues of the sources detected on the SPIRE 250 um images. The 1-sigma noise for source detection, including both confusion and instrumental noise, is 7.4, 9.4 and 10.2 mJy at 250, 350 and 500 um. Our catalogue includes 120230 sources in total, with 113995, 46209 and 11011 sources detected at >4-sigma at 250, 350 and 500 um. The catalogue contains detections at >3-sigma at 100 and 160 um for 4650 and 5685 sources, and the typical noise at these wavelengths is 44 and 49 mJy. We include estimates of the completeness of the survey and of the effects of flux bias and also describe a novel method for determining the true source counts. The H-ATLAS source counts are very similar to the source counts from the deeper HerMES survey at 250 and 350 um, with a small difference at 500 um. Appendix A provides a quick start in using the released datasets, including instructions and cautions on how to use them.
The {it Herschel} Astrophysical Terahertz Large Area Survey (H-ATLAS) is a survey of 660 deg$^2$ with the PACS and SPIRE cameras in five photometric bands: 100, 160, 250, 350 and 500mic. This is the second of three papers describing the data release for the large fields at the south and north Galactic poles (NGP and SGP). In this paper we describe the catalogues of far-infrared and submillimetre sources for the NGP and SGP, which cover 177 deg$^2$ and 303 deg$^2$, respectively. The catalogues contain 153,367 sources for the NGP field and 193,527 sources for the SGP field detected at more than 4$sigma$ significance in any of the 250, 350 or 500mic bands. The source detection is based on the 250mic map, and we present photometry in all five bands for each source, including aperture photometry for sources known to be extended. The rms positional accuracy for the faintest sources is about 2.4 arc seconds in both right ascension and declination. We present a statistical analysis of the catalogues and discuss the practical issues -- completeness, reliability, flux boosting, accuracy of positions, accuracy of flux measurements -- necessary to use the catalogues for astronomical projects.
124 - FangXia An 2019
We identify multi-wavelength counterparts to 1,147 submillimeter sources from the S2COSMOS SCUBA-2 survey of the COSMOS field by employing a recently developed radio$+$machine-learning method trained on a large sample of ALMA-identified submillimeter galaxies (SMGs), including 260 SMGs identified in the AS2COSMOS pilot survey. In total, we identify 1,222 optical/near-infrared(NIR)/radio counterparts to the 897 S2COSMOS submillimeter sources with S$_{850}$>1.6mJy, yielding an overall identification rate of ($78pm9$)%. We find that ($22pm5$)% of S2COSMOS sources have multiple identified counterparts. We estimate that roughly 27% of these multiple counterparts within the same SCUBA-2 error circles very likely arise from physically associated galaxies rather than line-of-sight projections by chance. The photometric redshift of our radio$+$machine-learning identified SMGs ranges from z=0.2 to 5.7 and peaks at $z=2.3pm0.1$. The AGN fraction of our sample is ($19pm4$)%, which is consistent with that of ALMA SMGs in the literature. Comparing with radio/NIR-detected field galaxy population in the COSMOS field, our radio+machine-learning identified counterparts of SMGs have the highest star-formation rates and stellar masses. These characteristics suggest that our identified counterparts of S2COSMOS sources are a representative sample of SMGs at z<3. We employ our machine-learning technique to the whole COSMOS field and identified 6,877 potential SMGs, most of which are expected to have submillimeter emission fainter than the confusion limit of our S2COSMOS surveys (S$_{850}$<1.5mJy). We study the clustering properties of SMGs based on this statistically large sample, finding that they reside in high-mass dark matter halos ($(1.2pm0.3)times10^{13},h^{-1},rm M_{odot}$), which suggests that SMGs may be the progenitors of massive ellipticals we see in the local Universe.
145 - E. Pascale , R. Auld , A. Dariush 2010
We have reduced the data taken with the Spectral and Photometric Imaging Receiver (SPIRE) photometer on board the Herschel Space Observatory in the Science Demonstration Phase (SDP) of the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS). We describe the data reduction, which poses specific challenges, both because of the sheer size of the data, and because only two scans are made for each region. We implement effective solutions to process the bolometric timelines into maps, and show that correlations among detectors are negligible, and that the photometer is stable on time scales up to 250 s. This is longer than the time the telescope takes to cross the observed sky region, and it allows us to use naive binning methods for an optimal reconstruction of the sky emission. The maps have equal contribution of confusion and white instrumental noise, and the latter is estimated to 5.3, 6.4, and 6.7 mJy/beam (1-{sigma}), at 250, 350, and 500 mu{m}, respectively. This pipeline is used to reduce other H-ATLAS observations, as they became available, and we discuss how it can be used with the optimal map maker implemented in the Herschel Interactive Processing Environment (HIPE), to improve computational efficiency and stability. The SDP dataset is available from http://www.h-atlas.org/.
We describe data release 3 (DR3) of the Galaxy And Mass Assembly (GAMA) survey. The GAMA survey is a spectroscopic redshift and multi-wavelength photometric survey in three equatorial regions each of 60.0 deg^2 (G09, G12, G15), and two southern regio ns of 55.7 deg^2 (G02) and 50.6 deg^2 (G23). DR3 consists of: the first release of data covering the G02 region and of data on H-ATLAS sources in the equatorial regions; and updates to data on sources released in DR2. DR3 includes 154809 sources with secure redshifts across four regions. A subset of the G02 region is 95.5% redshift complete to r<19.8 over an area of 19.5 deg^2, with 20086 galaxy redshifts, that overlaps substantially with the XXL survey (X-ray) and VIPERS (redshift survey). In the equatorial regions, the main survey has even higher completeness (98.5%), and spectra for about 75% of H-ATLAS filler targets were also obtained. This filler sample extends spectroscopic redshifts, for probable optical counterparts to H-ATLAS sub-mm sources, to 0.8 mag deeper (r<20.6) than the GAMA main survey. There are 25814 galaxy redshifts for H-ATLAS sources from the GAMA main or filler surveys. GAMA DR3 is available at the survey website (www.gama-survey.org/dr3/).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا