ترغب بنشر مسار تعليمي؟ اضغط هنا

BlackHoleCam: fundamental physics of the Galactic center

73   0   0.0 ( 0 )
 نشر من قبل Ciriaco Goddi
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Einsteins General Theory of Relativity (GR) successfully describes gravity. The most fundamental predictions of GR are black holes (BHs), but in spite of many convincing BH candidates in the Universe, there is no conclusive experimental proof of their existence using astronomical observations in the electromagnetic spectrum. Are BHs real astrophysical objects? Does GR hold in its most extreme limit or are alternatives needed? The prime target to address these fundamental questions is in the center of our own Galaxy, which hosts the closest and best-constrained supermassive BH candidate in the Universe, Sagittarius A* (Sgr A*). Three different types of experiments hold the promise to test GR in a strong-field regime using observations of Sgr A* with new-generation instruments. The first experiment aims to image the relativistic plasma emission which surrounds the event horizon and forms a shadow cast against the background, whose predicted size (~50 microarcseconds) can now be resolved by upcoming VLBI experiments at mm-waves such as the Event Horizon Telescope (EHT). The second experiment aims to monitor stars orbiting Sgr A* with the upcoming near-infrared interferometer GRAVITY at the Very Large Telescope (VLT). The third experiment aims to time a radio pulsar in tight orbit about Sgr A* using radio telescopes (including the Atacama Large Millimeter Array or ALMA). The BlackHoleCam project exploits the synergy between these three different techniques and aims to measure the main BH parameters with sufficient precision to provide fundamental tests of GR and probe the spacetime around a BH in any metric theory of gravity. Here, we review our current knowledge of the physical properties of Sgr A* as well as the current status of such experimental efforts towards imaging the event horizon, measuring stellar orbits, and timing pulsars around Sgr A*.


قيم البحث

اقرأ أيضاً

Future gravitational-wave observations will enable unprecedented and unique science in extreme gravity and fundamental physics answering questions about the nature of dynamical spacetimes, the nature of dark matter and the nature of compact objects.
Radio-loud neutron stars known as pulsars allow a wide range of experimental tests for fundamental physics, ranging from the study of super-dense matter to tests of general relativity and its alternatives. As a result, pulsars provide strong-field te sts of gravity, they allow for the direct detection of gravitational waves in a pulsar timing array, and they promise the future study of black hole properties. This contribution gives an overview of the on-going experiments and recent results.
Low-frequency gravitational-wave astronomy can perform precision tests of general relativity and probe fundamental physics in a regime previously inaccessible. A space-based detector will be a formidable tool to explore gravitys role in the cosmos, p otentially telling us if and where Einsteins theory fails and providing clues about some of the greatest mysteries in physics and astronomy, such as dark matter and the origin of the Universe.
Euclid is a European Space Agency medium class mission selected for launch in 2019 within the Cosmic Vision 2015-2025 programme. The main goal of Euclid is to understand the origin of the accelerated expansion of the Universe. Euclid will explore the expansion history of the Universe and the evolution of cosmic structures by measuring shapes and redshifts of galaxies as well as the distribution of clusters of galaxies over a large fraction of the sky. Although the main driver for Euclid is the nature of dark energy, Euclid science covers a vast range of topics, from cosmology to galaxy evolution to planetary research. In this review we focus on cosmology and fundamental physics, with a strong emphasis on science beyond the current standard models. We discuss five broad topics: dark energy and modified gravity, dark matter, initial conditions, basic assumptions and questions of methodology in the data analysis. This review has been planned and carried out within Euclids Theory Working Group and is meant to provide a guide to the scientific themes that will underlie the activity of the group during the preparation of the Euclid mission.
154 - Yun Fang 2020
S-stars in the Galactic Center are excellent testbeds of various general relativistic effects. While previous works focus on modeling their orbital motion around Sgr A*--the supermassive black hole in the Galactic Center--here we explore the possibil ity of using the rotation of S-stars to test the de Sitter precession predicted by general relativity. We show that by reorienting the rotation axes of S-stars, de Sitter precession will change the apparent width of the absorption lines in the stellar spectra. Our numerical simulations suggest that the newly discovered S4714 and S62 are best suited for such a test because of their small pericenter distances relative to Sgr A*. Depending on the initial inclination of the star, the line width would vary by as much as $20-76,{rm km,s^{-1}}$ within a period of $20-40$ years. Such a variation is comparable to the current detection limit. Since the precession rate is sensitive to the orbital eccentricity and stellar quadrupole structure, monitoring the rotation of S-stars could also help us better constrain the orbital elements of the S-stars and their internal structures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا