ترغب بنشر مسار تعليمي؟ اضغط هنا

The eras of radiation, matter, and dark energy: new information from the Planck Collaboration

30   0   0.0 ( 0 )
 نشر من قبل Kevin E. Cahill
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Kevin Cahill




اسأل ChatGPT حول البحث

Data released by the Planck Collaboration in 2015 imply new dates for the era of radiation, the era of matter, and the era of dark energy. The era of radiation ended, and the era of matter began, when the density of radiation dropped below that of matter. This happened 50,953 pm 2236 years after the time of infinite redshift when the ratio a(t)/a_0 of scale factors was (2.9332 pm 0.0711) x 10^{-4}. The era of matter ended, and the era of dark energy began, when the density of matter dropped below that of dark energy (assumed constant). This happened 10.1928 pm 0.0375 Gyr after the time of infinite redshift when the scale-factor ratio was 0.7646 pm 0.0168. The era of dark energy started 3.606 billion years ago. In this pedagogical paper, five figures trace the evolution of the densities of radiation and matter, the scale factor, and the redshift through the eras of radiation, matter, and dark energy.

قيم البحث

اقرأ أيضاً

41 - Kevin Cahill 2013
Data from the Planck satellite imply new dates for the major eras of the universe. The era of radiation ended 50,150 years after inflation and the era of matter 10.31 billion years after inflation or 3.51 billion years ago.
We present precision calculations of dark radiation in the form of gravitons coming from Hawking evaporation of spinning primordial black holes (PBHs) in the early Universe. Our calculation incorporates a careful treatment of extended spin distributi ons of a population of PBHs, the PBH reheating temperature, and the number of relativistic degrees of freedom. We compare our precision results with those existing in the literature, and show constraints on PBHs from current bounds on dark radiation from BBN and the CMB, as well as the projected sensitivity of CMB Stage 4 experiments. As an application, we consider the case of PBHs formed during an early matter-dominated era (EMDE). We calculate graviton production from various PBH spin distributions pertinent to EMDEs, and find that PBHs in the entire mass range up to $10^9,$g will be constrained by measurements from CMB Stage 4 experiments, assuming PBHs come to dominate the Universe prior to Hawking evaporation. We also find that for PBHs with monochromatic spins $a^*>0.81$, all PBH masses in the range $10^{-1},{rm g} < M_{rm BH} <10^9,$g will be probed by CMB Stage 4 experiments.
In this pedestrian approach I give my personal point of view on the various problems posed by dark matter in the universe. After a brief historical overview I discuss the various solutions stemming from high energy particle physics, and the current s tatus of experimental research on candidate particles (WIMPS). In the absence of direct evidence, the theories can still be evaluated by comparing their implications for the formation of galaxies, clusters and superclusters of galaxies against astronomical observations. I conclude briefly with the attempts to circumvent the dark matter problem by modifying the laws of gravity.
We present new constraints on coupled dark energy from the recent measurements of the Cosmic Microwave Background Anisotropies from the Planck satellite mission. We found that a coupled dark energy model is fully compatible with the Planck measuremen ts, deriving a weak bound on the dark matter-dark energy coupling parameter xi=-0.49^{+0.19}_{-0.31} at 68% c.l.. Moreover if Planck data are fitted to a coupled dark energy scenario, the constraint on the Hubble constant is relaxed to H_0=72.1^{+3.2}_{-2.3} km/s/Mpc, solving the tension with the Hubble Space Telescope value. We show that a combined Planck+HST analysis provides significant evidence for coupled dark energy finding a non-zero value for the coupling parameter xi, with -0.90< xi <-0.22 at 95% c.l.. We also consider the combined constraints from the Planck data plus the BAO measurements of the 6dF Galaxy Survey, the Sloan Digital Sky Survey and the Baron Oscillation Spectroscopic Survey.
166 - Jun-Qing Xia 2013
Recently, the Planck collaboration has released the first cosmological papers providing the high resolution, full sky, maps of the cosmic microwave background (CMB) temperature anisotropies. It is crucial to understand that whether the accelerating e xpansion of our universe at present is driven by an unknown energy component (Dark Energy) or a modification to general relativity (Modified Gravity). In this paper we study the coupled dark energy models, in which the quintessence scalar field nontrivially couples to the cold dark matter, with the strength parameter of interaction $beta$. Using the Planck data alone, we obtain that the strength of interaction between dark sectors is constrained as $beta < 0.102$ at $95%$ confidence level, which is tighter than that from the WMAP9 data alone. Combining the Planck data with other probes, like the Baryon Acoustic Oscillation (BAO), Type-Ia supernovae ``Union2.1 compilation and the CMB lensing data from Planck measurement, we find the tight constraint on the strength of interaction $beta < 0.052$ ($95%$ C.L.). Interestingly, we also find a non-zero coupling $beta = 0.078 pm 0.022$ ($68%$ C.L.) when we use the Planck, the ``SNLS supernovae samples, and the prior on the Hubble constant from the Hubble Space Telescope (HST) together. This evidence for the coupled dark energy models mainly comes from a tension between constraints on the Hubble constant from the Planck measurement and the local direct $H_0$ probes from HST.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا