ترغب بنشر مسار تعليمي؟ اضغط هنا

Comment on Frustration and Multicriticality in the Antiferromagnetic Spin-1 Chain

153   0   0.0 ( 0 )
 نشر من قبل Natalia Chepiga Natalia Chepiga
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The phase diagram of the spin-1 chain with bilinear-biquadratic and next-nearest neighbor inter- actions, recently investigated by Pixley, Shashi and Nevidomskyy [Phys. Rev. B 90, 214426 (2014)], has been revisited in the light of results we have recently obtained on a similar model. Combining extensive Density Matrix Renormalization Group (DMRG) simulations with conformal-field theory arguments, we confirm the presence of the three phases identified by Pixley et al, a Haldane phase, a next-nearest neighbor (NNN) Haldane phase, and a dimerized phase, but we come to significantly different conclusions regarding the nature of the phase transitions to the dimerized phase: i) We provide numerical evidence of a continuous Ising transition between the NNN-Haldane phase and the dimerized phase; ii) We show that the tri-critical end point, where the continuous transition between the Haldane phase and the dimerized phase turns into a first order transition, is distinct from the triple point where the three phases meet; iii) Finally, we demonstrate that the tri-critical end point is in the same Wess-Zumino-Witten (WZW) SU(2) level 2 universality class as the continuous transition line that ends at this point



قيم البحث

اقرأ أيضاً

Elementary excitations of the S=1/2 one-dimensional antiferromagnet KCuGaF_6 were investigated by inelastic neutron scattering in zero and finite magnetic fields perpendicular to the (1, 1, 0) plane combined with specific heat measurements. KCuGaF$_6 $ exhibits no long-range magnetic ordering down to 50 mK despite the large exchange interaction J/k_B=103 K. At zero magnetic field, well-defined spinon excitations were observed. The energy of the des Cloizeaux and Pearson mode of the spinon excitations is somewhat larger than that calculated with the above exchange constant. This discrepancy is mostly ascribed to the effective XY anisotropy arising from the large Dzyaloshinsky-Moriya interaction with an alternating D vector. KCuGaF_6 in a magnetic field is represented by the quantum sine-Gordon model, for which low-energy elementary excitations are composed of solitons, antisolitons and their bound states called breathers. Unlike the theoretical prediction, it was found that the energy of a soliton is smaller than that of the first breather, although the energy of the first breather coincides with that observed in a previous ESR measurement.
A minimal Kitaev-Gamma model has been recently investigated to understand various Kitaev systems. In the one-dimensional Kitaev-Gamma chain, an emergent SU(2)$_1$ phase and a rank-1 spin ordered phase with $O_hrightarrow D_4$ symmetry breaking were i dentified using non-Abelian bosonization and numerical techniques. However, puzzles near the antiferromagnetic Kitaev region with finite Gamma interaction remained unresolved. Here we focus on this parameter region and find that there are two new phases, namely, a rank-1 ordered phase with an $O_hrightarrow D_3$ symmetry breaking, and a peculiar Kitaev phase. Remarkably, the $O_hrightarrow D_3$ symmetry breaking corresponds to the classical magnetic order, but appears in a region very close to the antiferromagnetic Kitaev point where the quantum fluctuations are presumably very strong. In addition, a two-step symmetry breaking $O_hrightarrow D_{3d}rightarrow D_3$ is numerically observed as the length scale is increased: At short and intermediate length scales, the system behaves as having a rank-2 spin nematic order with $O_hrightarrow D_{3d}$ symmetry breaking; and at long distances, time reversal symmetry is further broken leading to the $O_hrightarrow D_3$ symmetry breaking. Finally, there is no numerical signature of spin orderings nor Luttinger liquid behaviors in the Kitaev phase whose nature is worth further studies.
Anderson localization is a general phenomenon of wave physics, which stems from the interference between multiple scattering paths1,2. It was originally proposed for electrons in a crystal, but later was also observed for light3-5, microwaves6, ultra sound7,8, and ultracold atoms9-12. Actually, in a crystal, besides electrons there may exist other quasiparticles such as magnons and spinons. However the search for Anderson localization of these magnetic excitations is rare so far. Here we report the first observation of spinon localization in copper benzoate, an ideal compound of spin-1/2 antiferromagnetic Heisenberg chain, by ultra-low-temperature specific heat and thermal conductivity measurements. We find that while the spinon specific heat Cs displays linear temperature dependence down to 50 mK, the spinons thermal conductivity ks only manifests the linear temperature dependence down to 300 mK. Below 300 mK, ks/T decreases rapidly and vanishes at about 100 mK, which is a clear evidence for Anderson localization. Our finding opens a new window for studying such a fundamental phenomenon in condensed matter physics.
258 - N. Hlubek , X. Zotos , S. Singh 2011
We have investigated the thermal conductivity kappa_mag of high-purity single crystals of the spin chain compound Sr2CuO3 which is considered an excellent realization of the one-dimensional spin-1/2 antiferromagnetic Heisenberg model. We find that th e spinon heat conductivity kappa_mag is strongly enhanced as compared to previous results obtained on samples with lower chemical purity. The analysis of kappa_mag allows to compute the spinon mean free path l_mag as a function of temperature. At low-temperature we find l_magsim0.5mum, corresponding to more than 1200 chain unit cells. Upon increasing the temperature, the mean free path decreases strongly and approaches an exponential decay ~1/T*exp(T*/T) which is characteristic for umklapp processes with the energy scale k_B T*. Based on Matthiesens rule we decompose l_mag into a temperature-independent spinon-defect scattering length l0 and a temperature dependent spinon-phonon scattering length l_sp(T). By comparing l_mag(T) of Sr2CuO3 with that of SrCuO2, we show that the spin-phonon interaction, as expressed by l_sp is practically the same in both systems. The comparison of the empirically derived l_sp with model calculations for the spin-phonon interaction of the one-dimensional spin-1/2 XY model yields reasonable agreement with the experimental data.
We report inelastic time-of-flight and triple-axis neutron scattering measurements of the excitation spectrum of the coupled antiferromagnetic spin-1 Heisenberg chain system CsNiCl3. Measurements over a wide range of wave-vector transfers along the c hain confirm that above T_N CsNiCl3 is in a quantum-disordered phase with an energy gap in the excitation spectrum. The spin correlations fall off exponentially with increasing distance with a correlation length xi=4.0(2) sites at T=6.2K. This is shorter than the correlation length for an antiferromagnetic spin-1 Heisenberg chain at this temperature, suggesting that the correlations perpendicular to the chain direction and associated with the interchain coupling lower the single-chain correlation length. A multi-particle continuum is observed in the quantum-disordered phase in the region in reciprocal space where antiferromagnetic fluctuations are strongest, extending in energy up to twice the maximum of the dispersion of the well-defined triplet excitations. We show that the continuum satisfies the Hohenberg-Brinkman sum rule. The dependence of the multi-particle continuum on the chain wave-vector resembles that of the two-spinon continuum in antiferromagnetic spin-1/2 Heisenberg chains. This suggests the presence of spin-1/2 degrees of freedom in CsNiCl3 for T < 12K, possibly caused by multiply-frustrated interchain interactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا