ﻻ يوجد ملخص باللغة العربية
We construct exactly solvable models for a wide class of symmetry enriched topological (SET) phases. Our construction applies to 2D bosonic SET phases with finite unitary onsite symmetry group $G$ and we conjecture that our models realize every phase in this class that can be described by a commuting projector Hamiltonian. Our models are designed so that they have a special property: if we couple them to a dynamical lattice gauge field with gauge group $G$, the resulting gauge theories are equivalent to modified string-net models. This property is what allows us to analyze our models in generality. As an example, we present a model for a phase with the same anyon excitations as the toric code and with a $mathbb{Z}_2$ symmetry which exchanges the $e$ and $m$ type anyons. We further illustrate our construction with a number of additional examples.
We construct fixed-point wave functions and exactly solvable commuting-projector Hamiltonians for a large class of bosonic symmetry-enriched topological (SET) phases, based on the concept of equivalent classes of symmetric local unitary transformatio
We propose a general construction of commuting projector lattice models for 2D and 3D topological phases enriched by U(1) symmetry, with finite-dimensional Hilbert space per site. The construction starts from a commuting projector model of the topolo
We show how to compute the exact partition function for lattice statistical-mechanical models whose Boltzmann weights obey a special crossing symmetry. The crossing symmetry equates partition functions on different trivalent graphs, allowing a transf
Motivated by the recently established duality between elasticity of crystals and a fracton tensor gauge theory, we combine it with boson-vortex duality, to explicitly account for bosonic statistics of the underlying atoms. We thereby derive a hybrid
We establish a direct connection between inhomogeneous XX spin chains (or free fermion systems with nearest-neighbors hopping) and certain QES models on the line giving rise to a family of weakly orthogonal polynomials. We classify all such models an