ﻻ يوجد ملخص باللغة العربية
The need for a consistent quantum evolution for black holes has led to proposals that their semiclassical description is modified not just near the singularity, but at horizon or larger scales. If such modifications extend beyond the horizon, they influence regions accessible to distant observeration. Natural candidates for these modifications behave like metric fluctuations, with characteristic length and time scales set by the horizon radius. We investigate the possibility of using the Event Horizon Telescope to observe these effects, if they have a strength sufficient to make quantum evolution consistent with unitarity. We find that such quantum fluctuations can introduce a strong time dependence for the shape and size of the shadow that a black hole casts on its surrounding emission. For the black hole in the center of the Milky Way, detecting the rapid time variability of its shadow will require non-imaging timing techniques. However, for the much larger black hole in the center of the M87 galaxy, a variable black-hole shadow, if present with these parameters, would be readily observable in the individual snapshots that will be obtained by the Event Horizon Telescope.
The advent of the Event Horizon Telescope (EHT), a millimeter-wave very-long baseline interferometric array, has enabled spatially-resolved studies of the sub-horizon-scale structure for a handful of supermassive black holes. Among these, the superma
We have now entered the new era of high-resolution imaging astronomy with the beginning of the Event Horizon Telescope (EHT). The EHT can resolve the dynamics of matter in the immediate vicinity around black holes at and below the horizon scale. One
We consider the evolution of a cosmic string loop that is captured by a much more massive and compact black hole. We show that after several reconnections that produce ejections of smaller loops, the loop that remains bound to the black hole moves on
Interferometers, such as the Event Horizon Telescope (EHT), do not directly observe the images of sources but rather measure their Fourier components at discrete spatial frequencies up to a maximum value set by the longest baseline in the array. Cons
Searching for violations of the no-hair theorem (NHT) is a powerful way to test gravity, and more generally fundamental physics, particularly with regards to the existence of additional scalar fields. The first observation of a black hole (BH) shadow