ترغب بنشر مسار تعليمي؟ اضغط هنا

Epitaxial graphene homogeneity and quantum Hall effect in millimeter-scale devices

131   0   0.0 ( 0 )
 نشر من قبل Yanfei Yang
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantized magnetotransport is observed in 5.6 x 5.6 mm^2 epitaxial graphene devices, grown using highly constrained sublimation on the Si-face of SiC(0001) at high temperature (1900 {deg}C). The precise quantized Hall resistance of Rxy = h/2e^2 is maintained up to record level of critical current Ixx = 0.72 mA at T = 3.1 K and 9 T in a device where Raman microscopy reveals low and homogeneous strain. Adsorption-induced molecular doping in a second device reduced the carrier concentration close to the Dirac point(n ~ 1E10 (1/cm^2)), where mobility of 43700 cm^2/Vs is measured over an area of 10 mm^2. Atomic force, confocal optical, and Raman microscopies are used to characterize the large-scale devices, and reveal improved SiC terrace topography and the structure of the graphene layer. Our results show that the structural uniformity of epitaxial graphene produced by face-to-graphite processing contributes to millimeter-scale transport homogeneity, and will prove useful for scientific and commercial applications.



قيم البحث

اقرأ أيضاً

263 - Xiaosong Wu , Yike Hu , Ming Ruan 2009
The observation of the anomalous quantum Hall effect in exfoliated graphene flakes triggered an explosion of interest in graphene. It was however not observed in high quality epitaxial graphene multilayers grown on silicon carbide substrates. The qua ntum Hall effect is shown on epitaxial graphene monolayers that were deliberately grown over substrate steps and subjected to harsh processing procedures, demonstrating the robustness of the epitaxial graphene monolayers and the immunity of their transport properties to temperature, contamination and substrate imperfections. The mobility of the monolayer C-face sample is 19,000 cm^2/Vs. This is an important step towards the realization of epitaxial graphene based electronics.
The prospect of a Dirac half metal, a material which is characterized by a bandstructure with a gap in one spin channel but a Dirac cone in the other, is of both fundamental interest and a natural candidate for use in spin-polarized current applicati ons. However, while the possibility of such a material has been reported based on model calculations[H. Ishizuka and Y. Motome, Phys. Rev. Lett. 109, 237207 (2012)], it remains unclear what material system might realize such an exotic state. Using first-principles calculations, we show that the experimentally accessible Mn intercalated epitaxial graphene on SiC(0001) transits to a Dirac half metal when the coverage is > 1/3 monolayer. This transition results from an orbital-selective breaking of quasi-2D inversion symmetry, leading to symmetry breaking in a single spin channel which is robust against randomness in the distribution of Mn intercalates. Furthermore, the inclusion of spin-orbit interaction naturally drives the system into the quantum anomalous Hall (QAH) state. Our results thus not only demonstrate the practicality of realizing the Dirac half metal beyond a toy model but also open up a new avenue to the realization of the QAH effect.
Series connection of four quantum Hall effect (QHE) devices based on epitaxial graphene films was studied for realization of a quantum resistance standard with an up-scaled value. The tested devices showed quantum Hall plateaux RH,2 at filling factor i = 2 starting from relatively low magnetic field (between 4 T and 5 T) when temperature was 1.5 K. Precision measurements of quantized Hall resistance of four QHE devices connected by triple series connections and external bonding wires were done at B = 7 T and T = 1.5 K using a commercial precision resistance bridge with 50 microA current through the QHE device. The results showed that the deviation of the quantized Hall resistance of the series connection of four graphene-based QHE devices from the expected value of 4*RH,2 = 2h/e^2 was smaller than the relative standard uncertainty of the measurement (< 1*10^-7) limited by the used resistance bridge.
293 - N. Bart , C. Dangel , P. Zajac 2020
Control of the position and density of semiconductor quantum dots (QDs) is vital for a variety of emergent technologies, such as quantum photonics and advanced opto-electronic devices. However, established ordering methods typically call for ex-situ processing prior to growth that have a deleterious impact on the optical quality of nanostructures. Here, we apply a conventional epitaxial growth method - molecular beam epitaxy (MBE) - to achieve wafer scale positioning of optically active QDs with high reproducibility, tunable periodicity, and controlled density across an entire unpatterned 3-inch semiconductor wafer. Hereby, we exploit material thickness gradients across the wafer to modulate the QD nucleation probability and demonstrate how our approaches can be used to achieve strong periodic modulation of the local dot density tunable over length scales ranging from a few millimeters to at least a few hundred microns in one or two spatial directions. The methods are universal and are applicable to a wide variety of semiconductor material systems.
We discuss the quantum Hall effect on a single-layer graphene in the framework of noncommutative (NC) phase space. We find it induces a shift in the Hall resistivity. Furthermore, comparison with experimental data reveals an upper bound on the magnit ude of the momentum NC parameter $eta$ in about $sqrt{eta}leq 2.5 , mathrm{eV}/c$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا