ترغب بنشر مسار تعليمي؟ اضغط هنا

Fermi surface manipulation by external magnetic field demonstrated for a prototypical ferromagnet

90   0   0.0 ( 0 )
 نشر من قبل Ewa Mlynczak
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the details of the near-surface electronic band structure of a prototypical ferromagnet, Fe(001). Using high resolution angle-resolved photoemission spectroscopy we demonstrate openings of the spin-orbit induced electronic band gaps near the Fermi level. The band gaps and thus the Fermi surface can be manipulated by changing the remanent magnetization direction. The effect is of the order of $Delta$E = 100 meV and $Delta text {k} = 0.1,text{AA}^{-1}$. We show that the observed dispersions are dominated by the bulk band structure. First-principles calculations and one-step photoemission calculations suggest that the effect is related to changes in the electronic ground state, rather than caused by the photoemission process itself. The symmetry of the effect indicates that the observed electronic bulk states are influenced by the presence of the surface, which might be understood as related to a Rashba-type effect. By pinpointing the regions in the electronic band structure where the switchable band gaps occur, we demonstrate the significance of spin-orbit interaction even for elements as light as 3d ferromagnets.

قيم البحث

اقرأ أيضاً

We demonstrate that an antiferromagnet can be employed for a highly efficient electrical manipulation of a ferromagnet. In our study we use an electrical detection technique of the ferromagnetic resonance driven by an in-plane ac-current in a NiFe/Ir Mn bilayer. At room temperature, we observe antidamping-like spin torque acting on the NiFe ferromagnet, generated by the in-plane current driven through the IrMn antiferromagnet. A large enhancement of the torque, characterized by an effective spin-Hall angle exceeding most heavy transition metals, correlates with the presence of the exchange-bias field at the NiFe/IrMn interface. It highlights that, in addition to strong spin-orbit coupling, the antiferromagnetic order in IrMn governs the observed phenomenon.
Weyl semimetals in a magnetic field give rise to interesting non-local electronic orbits: the ballistic transport through the bulk enabled by the chiral Landau levels is combined with a momentum-space sliding along the surface Fermi-arc driven by the Lorentz force. Bulk chiral Landau levels can also be induced by axial fields whose sign depends on the chirality of the Weyl point. However, the microscopic perturbations that give rise to them can be described in terms of gauge fields only in the low-energy sectors around the Weyl points. In addition, since pseudo-fields are intrinsic, there is no apparent reason for a Lorentz force that causes sliding along the Fermi-arcs. Therefore, the existence of non-local orbits driven exclusively by pseudo-fields is not obvious. Here, we show that for systems with at least four Weyl points in the bulk spectrum, non-local orbits can be induced by axial fields alone. We discuss the underlying mechanisms by a combination of analytical semi-classical theory, the microscopic numerical study of wave-packet dynamics, and a surface Greens function analysis.
We investigate the effect of an external magnetic field on the physical properties of the acceptor hole states associated with single Mn acceptors placed near the (110) surface of GaAs. Crosssectional scanning tunneling microscopy images of the accep tor local density of states (LDOS) show that the strongly anisotropic hole wavefunction is not significantly affected by a magnetic field up to 6 T. These experimental results are supported by theoretical calculations based on a tightbinding model of Mn acceptors in GaAs. For Mn acceptors on the (110) surface and the subsurfaces immediately underneath, we find that an applied magnetic field modifies significantly the magnetic anisotropy landscape. However the acceptor hole wavefunction is strongly localized around the Mn and the LDOS is quite independent of the direction of the Mn magnetic moment. On the other hand, for Mn acceptors placed on deeper layers below the surface, the acceptor hole wavefunction is more delocalized and the corresponding LDOS is much more sensitive on the direction of the Mn magnetic moment. However the magnetic anisotropy energy for these magnetic impurities is large (up to 15 meV), and a magnetic field of 10 T can hardly change the landscape and rotate the direction of the Mn magnetic moment away from its easy axis. We predict that substantially larger magnetic fields are required to observe a significant field-dependence of the tunneling current for impurities located several layers below the GaAs surface.
Anomalous surface states with Fermi arcs are commonly considered to be a fingerprint of Dirac semimetals (DSMs). In contrast to Weyl semimetals, however, Fermi arcs of DSMs are not topologically protected. Using first-principles calculations, we pred ict that $beta$-CuI is a peculiar DSM whose surface states form closed Fermi pockets instead of Fermi arcs. In such a fermiological Dirac semimetal, the deformation mechanism from Fermi arcs to Fermi pockets stems from a large cubic term preserving all crystal symmetries, and the small energy difference between the surface and bulk Dirac points. The cubic term in $beta$-CuI, usually negligible in prototypical DSMs, becomes relevant because of the particular crystal structure. As such, we establish a concrete material example manifesting the lack of topological protection for surface Fermi arcs in DSMs
Detailed investigation of the incommensurate magnetic ordering in a single crystal of multiferroic NdMn2O5 has been performed using both non-polarized and polarized neutron diffraction techniques. Below TN = 30.5 K magnetic Bragg reflections correspo nding to the non-chiral type magnetic structure with propagation vector k1 = (0.5 0 kz1) occurs. Below about 27 K a new distorted magnetic modulation with a similar vector kz2 occurs, which is attributed to the magnetization of the Nd3+ ions by the Mn-sub-lattice. Strong temperature hysteresis in the occurrence of the incommensurate magnetic phases in NdMn2O5 was observed depending on the cooling or heating history of the sample. Below about 20 K the magnetic structure became of a chiral type. From spherical neutron polarimetry measurements, the resulting low-temperature magnetic structure kz3 was approximated by the general elliptic helix. The parameters of the magnetic helix-like ellipticity and helical plane orientation in regard to the crystal structure were determined. A reorientation of the helix occurs at an intermediate temperature between 4 K and 18 K. A difference between the population of right- and left-handed chiral domains of about 0.2 was observed in the as-grown crystal when cooling without an external electric field. The magnetic chiral ratio can be changed by the application of an external electric field of a few kV/cm, revealing strong magnetoelectric coupling. A linear dependence of the magnetic chirality on the applied electric field in NdMn2O5 was found. The results are discussed within the frame of the antisymmetric super-exchange model for Dzyaloshinsky-Moria interaction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا