ﻻ يوجد ملخص باللغة العربية
We consider the details of the near-surface electronic band structure of a prototypical ferromagnet, Fe(001). Using high resolution angle-resolved photoemission spectroscopy we demonstrate openings of the spin-orbit induced electronic band gaps near the Fermi level. The band gaps and thus the Fermi surface can be manipulated by changing the remanent magnetization direction. The effect is of the order of $Delta$E = 100 meV and $Delta text {k} = 0.1,text{AA}^{-1}$. We show that the observed dispersions are dominated by the bulk band structure. First-principles calculations and one-step photoemission calculations suggest that the effect is related to changes in the electronic ground state, rather than caused by the photoemission process itself. The symmetry of the effect indicates that the observed electronic bulk states are influenced by the presence of the surface, which might be understood as related to a Rashba-type effect. By pinpointing the regions in the electronic band structure where the switchable band gaps occur, we demonstrate the significance of spin-orbit interaction even for elements as light as 3d ferromagnets.
We demonstrate that an antiferromagnet can be employed for a highly efficient electrical manipulation of a ferromagnet. In our study we use an electrical detection technique of the ferromagnetic resonance driven by an in-plane ac-current in a NiFe/Ir
Weyl semimetals in a magnetic field give rise to interesting non-local electronic orbits: the ballistic transport through the bulk enabled by the chiral Landau levels is combined with a momentum-space sliding along the surface Fermi-arc driven by the
We investigate the effect of an external magnetic field on the physical properties of the acceptor hole states associated with single Mn acceptors placed near the (110) surface of GaAs. Crosssectional scanning tunneling microscopy images of the accep
Anomalous surface states with Fermi arcs are commonly considered to be a fingerprint of Dirac semimetals (DSMs). In contrast to Weyl semimetals, however, Fermi arcs of DSMs are not topologically protected. Using first-principles calculations, we pred
Detailed investigation of the incommensurate magnetic ordering in a single crystal of multiferroic NdMn2O5 has been performed using both non-polarized and polarized neutron diffraction techniques. Below TN = 30.5 K magnetic Bragg reflections correspo