ﻻ يوجد ملخص باللغة العربية
Efficient solutions to NP-complete problems would significantly benefit both science and industry. However, such problems are intractable on digital computers based on the von Neumann architecture, thus creating the need for alternative solutions to tackle such problems. Recently, a deterministic, continuous-time dynamical system (CTDS) was proposed (Nat.Phys. {bf 7}(12), 966 (2011)) to solve a representative NP-complete problem, Boolean Satisfiability (SAT). This solver shows polynomial analog time-complexity on even the hardest benchmark $k$-SAT ($k geq 3$) formulas, but at an energy cost through exponentially driven auxiliary variables. This paper presents a novel analog hardware SAT solver, AC-SAT, implementing the CTDS via incorporating novel, analog circuit design ideas. AC-SAT is intended to be used as a co-processor and is programmable for handling different problem specifications. It is especially effective for solving hard $k$-SAT problem instances that are challenging for algorithms running on digital machines. Furthermore, with its modular design, AC-SAT can readily be extended to solve larger size problems, while the size of the circuit grows linearly with the product of the number of variables and number of clauses. The circuit is designed and simulated based on a 32nm CMOS technology. SPICE simulation results show speedup factors of $sim$10$^4$ on even the hardest 3-SAT problems, when compared with a state-of-the-art SAT solver on digital computers. As an example, for hard problems with $N=50$ variables and $M=212$ clauses, solutions are found within from a few $ns$ to a few hundred $ns$.
Boolean satisfiability is a propositional logic problem of interest in multiple fields, e.g., physics, mathematics, and computer science. Beyond a field of research, instances of the SAT problem, as it is known, require efficient solution methods in
For Boolean satisfiability problems, the structure of the solution space is characterized by the solution graph, where the vertices are the solutions, and two solutions are connected iff they differ in exactly one variable. In 2006, Gopalan et al. st
In this paper, we present a new, graph-based modeling approach and a polynomial-sized linear programming (LP) formulation of the Boolean satisfiability problem (SAT). The approach is illustrated with a numerical example.
For Boolean satisfiability problems, the structure of the solution space is characterized by the solution graph, where the vertices are the solutions, and two solutions are connected iff they differ in exactly one variable. For this implicitly define
Developing mixed-signal analog-digital neuromorphic circuits in advanced scaled processes poses significant design challenges. We present compact and energy efficient sub-threshold analog synapse and neuron circuits, optimized for a 28 nm FD-SOI proc