ﻻ يوجد ملخص باللغة العربية
A new detector is being developed at the National Superconducting Cyclotron Laboratory (NSCL) to measure low energy charged-particles from beta-delayed particle emission. These low energy particles are very important for nuclear astrophysics studies. The use of a gaseous system instead of a solid state detector decreases the sensitivity to betas while keeping high efficiency for higher mass charged particles like protons or alphas. This low sensitivity to betas minimizes their contribution to the background down to 150 keV. A detailed simulation tool based on textsc{Geant4} has been developed for this future detector.
The gamma-ray background in the indoor environment has been measured up to 3 MeV to evaluate the feasibility of studying low cross-section (nanobarn to picobarn range) astrophysical reactions at the Facility for Research in Experimental Nuclear Astro
A neutron spectrometer, the European Low-Energy Neutron Spectrometer (ELENS), has been constructed to study exotic nuclei in inverse-kinematics experiments. The spectrometer, which consists of plastic scintillator bars, can be operated in the neutron
Solar axions could be converted into x-rays inside the strong magnetic field of an axion helioscope, triggering the detection of this elusive particle. Low background x-ray detectors are an essential component for the sensitivity of these searches. W
A prototype multiwire proportional chamber (MWPC) was developed to demonstrate the feasibility of constructing a radiopure time projection chamber with MWPC track readout to assay materials for alpha- and beta-emitting surface contaminants for future
A cadmium tungstate crystal boule enriched in $^{116}$Cd to 82% with mass of 1868 g was grown by the low-thermal-gradient Czochralski technique. The isotopic composition of cadmium and the trace contamination of the crystal were estimated by High Res