ترغب بنشر مسار تعليمي؟ اضغط هنا

Parallelizing quantum circuit synthesis

61   0   0.0 ( 0 )
 نشر من قبل Olivia Di Matteo
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum circuit synthesis is the process in which an arbitrary unitary operation is decomposed into a sequence of gates from a universal set, typically one which a quantum computer can implement both efficiently and fault-tolerantly. As physical implementations of quantum computers improve, the need is growing for tools which can effectively synthesize components of the circuits and algorithms they will run. Existing algorithms for exact, multi-qubit circuit synthesis scale exponentially in the number of qubits and circuit depth, leaving synthesis intractable for circuits on more than a handful of qubits. Even modest improvements in circuit synthesis procedures may lead to significant advances, pushing forward the boundaries of not only the size of solvable circuit synthesis problems, but also in what can be realized physically as a result of having more efficient circuits. We present a method for quantum circuit synthesis using deterministic walks. Also termed pseudorandom walks, these are walks in which once a starting point is chosen, its path is completely determined. We apply our method to construct a parallel framework for circuit synthesis, and implement one such version performing optimal $T$-count synthesis over the Clifford+$T$ gate set. We use our software to present examples where parallelization offers a significant speedup on the runtime, as well as directly confirm that the 4-qubit 1-bit full adder has optimal $T$-count 7 and $T$-depth 3.



قيم البحث

اقرأ أيضاً

67 - Rolando D. Somma 2018
We present a method that outputs a sequence of simple unitary operations to prepare a given quantum state that is a generalized coherent state. Our method takes as inputs the expectation values of some relevant observables on the state to be prepared . Such expectation values can be estimated by performing projective measurements on $O(M^3 log(M/delta)/epsilon^2)$ copies of the state, where $M$ is the dimension of an associated Lie algebra, $epsilon$ is a precision parameter, and $1-delta$ is the required confidence level. The method can be implemented on a classical computer and runs in time $O(M^4 log(M/epsilon))$. It provides $O(M log(M/epsilon))$ simple unitaries that form the sequence. The number of all computational resources is then polynomial in $M$, making the whole procedure very efficient in those cases where $M$ is significantly smaller than the Hilbert space dimension. When the algebra of relevant observables is determined by some Pauli matrices, each simple unitary may be easily decomposed into two-qubit gates. We discuss applications to quantum state tomography and classical simulations of quantum circuits.
The current phase of quantum computing is in the Noisy Intermediate-Scale Quantum (NISQ) era. On NISQ devices, two-qubit gates such as CNOTs are much noisier than single-qubit gates, so it is essential to minimize their count. Quantum circuit synthes is is a process of decomposing an arbitrary unitary into a sequence of quantum gates, and can be used as an optimization tool to produce shorter circuits to improve overall circuit fidelity. However, the time-to-solution of synthesis grows exponentially with the number of qubits. As a result, synthesis is intractable for circuits on a large qubit scale. In this paper, we propose a hierarchical, block-by-block optimization framework, QGo, for quantum circuit optimization. Our approach allows an exponential cost optimization to scale to large circuits. QGo uses a combination of partitioning and synthesis: 1) partition the circuit into a sequence of independent circuit blocks; 2) re-generate and optimize each block using quantum synthesis; and 3) re-compose the final circuit by stitching all the blocks together. We perform our analysis and show the fidelity improvements in three different regimes: small-size circuits on real devices, medium-size circuits on noise simulations, and large-size circuits on analytical models. Using a set of NISQ benchmarks, we show that QGo can reduce the number of CNOT gates by 29.9% on average and up to 50% when compared with industrial compilers such as t|ket>. When executed on the IBM Athens system, shorter depth leads to higher circuit fidelity. We also demonstrate the scalability of our QGo technique to optimize circuits of 60+ qubits. Our technique is the first demonstration of successfully employing and scaling synthesis in the compilation toolchain for large circuits. Overall, our approach is robust for direct incorporation in production compiler toolchains.
We present QFAST, a quantum synthesis tool designed to produce short circuits and to scale well in practice. Our contributions are: 1) a novel representation of circuits able to encode placement and topology; 2) a hierarchical approach with an iterat ive refinement formulation that combines coarse-grained fast optimization during circuit structure search with a good, but slower, optimization stage only in the final circuit instantiation stage. When compared against state-of-the-art techniques, although not optimal, QFAST can generate much shorter circuits for time dependent evolution algorithms used by domain scientists. We also show the composability and tunability of our formulation in terms of circuit depth and running time. For example, we show how to generate shorter circuits by plugging in the best available third party synthesis algorithm at a given hierarchy level. Composability enables portability across chip architectures, which is missing from the available approaches.
Given an arbitrary $2^w times 2^w$ unitary matrix $U$, a powerful matrix decomposition can be applied, leading to four different syntheses of a $w$-qubit quantum circuit performing the unitary transformation. The demonstration is based on a recent th eorem by Fuhr and Rzeszotnik, generalizing the scaling of single-bit unitary gates ($w=1$) to gates with arbitrary value of~$w$. The synthesized circuit consists of controlled 1-qubit gates, such as NEGATOR gates and PHASOR gates. Interestingly, the approach reduces to a known synthesis method for classical logic circuits consisting of controlled NOT gates, in the case that $U$ is a permutation matrix.
We present a quantum synthesis algorithm designed to produce short circuits and to scale well in practice. The main contribution is a novel representation of circuits able to encode placement and topology using generic gates, which allows the QFAST a lgorithm to replace expensive searches over circuit structures with few steps of numerical optimization. When compared against optimal depth, search based state-of-the-art techniques, QFAST produces comparable results: 1.19x longer circuits up to four qubits, with an increase in compilation speed of 3.6x. In addition, QFAST scales up to seven qubits. When compared with the state-of-the-art rule based decomposition techniques in Qiskit, QFAST produces circuits shorter by up to two orders of magnitude (331x), albeit 5.6x slower. We also demonstrate the composability with other techniques and the tunability of our formulation in terms of circuit depth and running time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا