ترغب بنشر مسار تعليمي؟ اضغط هنا

FMR studies of exchange-coupled multiferroic polycrystalline Pt/BiFeO$_3$/Ni$_{81}$Fe$_{19}$/Pt heterostructures

90   0   0.0 ( 0 )
 نشر من قبل Souren Pogossian
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An experimental study of the in-plane azimuthal behaviour and frequency dependence of the ferromagnetic resonance field and the resonance linewidth as a function of BiFeO$_3$ thickness is carried out in a polycrystalline exchange-biased BiFeO$_3$/Ni$_{81}$Fe$_{19}$ system. The magnetization decrease of the Pt/BiFeO$_3$/Ni$_{81}$Fe$_{19}$/Pt heterostructures with BiFeO$_3$ thickness deduced from static measurements has been confirmed by dynamic investigations. Ferromagnetic resonance measurements have shown lower gyromagnetic ratio in a perpendicular geometry compared with that of a parallel geometry. The monotonous decrease of gyromagnetic ratio in a perpendicular geometry as a function of the BiFeO$_3$ film thickness seems to be related to the spin-orbit interactions due to the neighbouring Pt film at its interface with Ni$_{81}$Fe$_{19}$ film. The in-plane azimuthal shape of the total linewidth of the uniform mode shows isotropic behaviour that increases with BiFeO$_3$ thickness. The study of the frequency dependence of the resonance linewidth in a broad band of 3 to 35 GHz has allowed the determination of intrinsic and extrinsic contributions to the relaxation as function of BiFeO$_3$ thickness in perpendicular geometries. In our system the magnetic relaxation is dominated by the spin-pumping mechanism due to the presence of Pt. The insertion of BiFeO$_3$ between Pt and Ni$_{81}$Fe$_{19}$ attenuates the spin-pumping damping at one interface.



قيم البحث

اقرأ أيضاً

234 - W. Cao , L. Yang , S. Auffret 2018
A recent theory by Chen and Zhang [Phys. Rev. Lett. 114, 126602 (2015)] predicts strongly anisotropic damping due to interfacial spin-orbit coupling in ultrathin magnetic films. Interfacial Gilbert-type relaxation, due to the spin pumping effect, is predicted to be significantly larger for magnetization oriented parallel to compared with perpendicular to the film plane. Here, we have measured the anisotropy in the Pt/Ni$_{81}$Fe$_{19}$/Pt system via variable-frequency, swept-field ferromagnetic resonance (FMR). We find a very small anisotropy of enhanced Gilbert damping with sign opposite to the prediction from the Rashba effect at the FM/Pt interface. The results are contrary to the predicted anisotropy and suggest that a mechanism separate from Rashba spin-orbit coupling causes the rapid onset of spin-current absorption in Pt.
The temperature dependence of exchange bias properties are studied in polycrystalline $ mathrm{BiFeO_3} / mathrm{Ni_{81}Fe_{19}} $ bilayers, for different $ mathrm{BiFeO_3} $ thicknesses. Using a field cooling protocol, a non-monotonic behavior of th e exchange bias field is shown in the exchange-biased bilayers. Another thermal protocol, the Soeya protocol, related to the $ mathrm{BiFeO_3} $ thermal activation energies was carried out and reveals a two-step evolution of the exchange bias field. The results of these two different protocols are similar to the ones obtained for measurements previously reported on epitaxial $ mathrm{BiFeO_3} $, indicating a driving mechanism independent of the long-range crystalline arrangement (i.e., epitaxial or polycrystalline). An intrinsic property of $ mathrm{BiFeO_3} $ is proposed as being the driving mechanism for the thermal dependent magnetization reversal: the canting of the $ mathrm{BiFeO_3} $ spins leading to a biquadratic contribution to the exchange coupling. The temperature dependence of the magnetization reversal angular behavior agrees with the presence of such a biquadratic contribution for exchange biased bilayers studied here.
Based on the spin-pumping theory and first-principles calculations, the spin-mixing conductance (SMC) is theoretically studied for Pt/Permalloy (Ni$_{81}$Fe$_{19}$, Py) junctions. We evaluate the SMC for ideally clean Pt/Py junctions and examine the effects of interface randomness. We find that the SMC is generally enhanced in the presence of interface roughness as compared to the ideally clean junctions. Our estimated SMC is in good quantitative agreement with the recent experiment for Pt/Py junctions. We propose possible routes to increase the SMC in Pt/Py junctions by depositing a foreign magnetic metal layer in Pt, offering guidelines for designing the future spintronic devices.
150 - W. Cao , J. Liu , A. Zangiabadi 2019
We present measurements of interfacial Gilbert damping due to the spin pumping effect in Ni$_{81}$Fe$_{19}$/W heterostructures. Measurements were compared for heterostructures in which the crystallographic phase of W, either $alpha$(bcc)-W or $beta$( A15)-W, was enriched through deposition conditions and characterized using X-ray diffraction (XRD) and high-resolution cross-sectional transmission electron microscopy (HR-XTEM). Single phase Ni$_{81}$Fe$_{19}$/$alpha$-W heterostructures could be realized, but heterostructures with $beta$-W were realized as mixed $alpha$-$beta$ phase. The spin mixing conductances (SMC) for W at interfaces with Ni$_{81}$Fe$_{19}$ were found to be significantly lower than those for similarly heavy metals such as Pd and Pt, but comparable to those for Ta, and independent of enrichment in the $beta$ phase.
We report annealing induced exchange bias in Fe-Cu-Pt based heterostructures with Cu as an intermediate layer (Fe/Cu/Pt heterostructure) and capping layer (Fe/Pt/Cu heterostructure). Exchange bias observed at room temperature (300 K) is found to be d ependent on the annealing temperature. We obtained positive exchange bias of 120 Oe on annealing both the heterostructures at 400 oC, while on annealing these heterostructures at 500 and 600 oC a negative exchange bias of ~ -100 Oe was found. X-ray reflectivity and polarized neutron reflectivity measurements provided evolution of depth dependent structure and magnetic properties of the heterostructures on annealing at different temperatures and revealed coexistence of soft and hard (alloy) magnetic phases across the thickness of the films. Rapid and long range interdiffusion at interfaces on annealing the systems at a temperature above 400 oC resulted into formation of a ternary alloy phase. These results can be understood within the context of a very unusual interface exchange interaction at the interface of hard/soft magnetic phases, which are dependent on the annealing temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا