ترغب بنشر مسار تعليمي؟ اضغط هنا

PAC-Bayesian Analysis for a two-step Hierarchical Multiview Learning Approach

90   0   0.0 ( 0 )
 نشر من قبل Emilie Morvant
 تاريخ النشر 2016
  مجال البحث الاحصاء الرياضي
والبحث باللغة English
 تأليف Anil Goyal




اسأل ChatGPT حول البحث

We study a two-level multiview learning with more than two views under the PAC-Bayesian framework. This approach, sometimes referred as late fusion, consists in learning sequentially multiple view-specific classifiers at the first level, and then combining these view-specific classifiers at the second level. Our main theoretical result is a generalization bound on the risk of the majority vote which exhibits a term of diversity in the predictions of the view-specific classifiers. From this result it comes out that controlling the trade-off between diversity and accuracy is a key element for multiview learning, which complements other results in multiview learning. Finally, we experiment our principle on multiview datasets extracted from the Reuters RCV1/RCV2 collection.


قيم البحث

اقرأ أيضاً

Gaussian Processes (GPs) are a generic modelling tool for supervised learning. While they have been successfully applied on large datasets, their use in safety-critical applications is hindered by the lack of good performance guarantees. To this end, we propose a method to learn GPs and their sparse approximations by directly optimizing a PAC-Bayesian bound on their generalization performance, instead of maximizing the marginal likelihood. Besides its theoretical appeal, we find in our evaluation that our learning method is robust and yields significantly better generalization guarantees than other common GP approaches on several regression benchmark datasets.
We place an Indian Buffet process (IBP) prior over the structure of a Bayesian Neural Network (BNN), thus allowing the complexity of the BNN to increase and decrease automatically. We further extend this model such that the prior on the structure of each hidden layer is shared globally across all layers, using a Hierarchical-IBP (H-IBP). We apply this model to the problem of resource allocation in Continual Learning (CL) where new tasks occur and the network requires extra resources. Our model uses online variational inference with reparameterisation of the Bernoulli and Beta distributions, which constitute the IBP and H-IBP priors. As we automatically learn the number of weights in each layer of the BNN, overfitting and underfitting problems are largely overcome. We show empirically that our approach offers a competitive edge over existing methods in CL.
We study the issue of PAC-Bayesian domain adaptation: We want to learn, from a source domain, a majority vote model dedicated to a target one. Our theoretical contribution brings a new perspective by deriving an upper-bound on the target risk where t he distributions divergence---expressed as a ratio---controls the trade-off between a source error measure and the target voters disagreement. Our bound suggests that one has to focus on regions where the source data is informative.From this result, we derive a PAC-Bayesian generalization bound, and specialize it to linear classifiers. Then, we infer a learning algorithmand perform experiments on real data.
203 - Zichao Wang , Yi Gu , Andrew Lan 2020
We propose VarFA, a variational inference factor analysis framework that extends existing factor analysis models for educational data mining to efficiently output uncertainty estimation in the models estimated factors. Such uncertainty information is useful, for example, for an adaptive testing scenario, where additional tests can be administered if the model is not quite certain about a students skill level estimation. Traditional Bayesian inference methods that produce such uncertainty information are computationally expensive and do not scale to large data sets. VarFA utilizes variational inference which makes it possible to efficiently perform Bayesian inference even on very large data sets. We use the sparse factor analysis model as a case study and demonstrate the efficacy of VarFA on both synthetic and real data sets. VarFA is also very general and can be applied to a wide array of factor analysis models.
In this paper, we provide two main contributions in PAC-Bayesian theory for domain adaptation where the objective is to learn, from a source distribution, a well-performing majority vote on a different target distribution. On the one hand, we propose an improvement of the previous approach proposed by Germain et al. (2013), that relies on a novel distribution pseudodistance based on a disagreement averaging, allowing us to derive a new tighter PAC-Bayesian domain adaptation bound for the stochastic Gibbs classifier. We specialize it to linear classifiers, and design a learning algorithm which shows interesting results on a synthetic problem and on a popular sentiment annotation task. On the other hand, we generalize these results to multisource domain adaptation allowing us to take into account different source domains. This study opens the door to tackle domain adaptation tasks by making use of all the PAC-Bayesian tools.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا