ﻻ يوجد ملخص باللغة العربية
In a recent paper on exotic crossed products, we included a lemma concerning ideals of the Fourier-Stieltjes algebra. Buss, Echterhoff, and Willett have pointed out to us that our proof of this lemma contains an error. In fact, it remains an open question whether the lemma is true as stated. In this note we indicate how to contain the resulting damage. Our investigation of the above question leads us to define two properties emph{ordered} and emph{weakly ordered} for invariant ideals of Fourier-Stieltjes algebras, and we initiate a study of these properties.
We consider the Fourier-Stietljes algebra B(G) of a locally compact group G. We show that operator amenablility of B(G) implies that a certain semitolpological compactification of G admits only finitely many idempotents. In the case that G is connect
The Fourier(-Stieltjes) algebras on locally compact groups are important commutative Banach algebras in abstract harmonic analysis. In this paper we introduce a generalization of the above two algebras via twisting with respect to 2-cocycles on the g
Let G be a locally compact group, and let A(G) and B(G) denote its Fourier and Fourier-Stieltjes algebras. These algebras are dual objects of the group and measure algebras, L^1(G) and M(G), in a sense which generalizes the Pontryagin duality theorem
We examine the common null spaces of families of Herz-Schur multipliers and apply our results to study jointly harmonic operators and their relation with jointly harmonic functionals. We show how an annihilation formula obtained in J. Funct. Anal. 26
This paper is concerned with weak* closed masa-bimodules generated by A(G)-invariant subspaces of VN(G). An annihilator formula is established, which is used to characterise the weak* closed subspaces of B(L^2(G)) which are invariant under both Schur