ترغب بنشر مسار تعليمي؟ اضغط هنا

A Novel Quasi-One-Dimensional Topological Insulator in Bismuth Iodide $beta$-Bi$_4$I$_4$

140   0   0.0 ( 0 )
 نشر من قبل Oleg Yazyev
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent progress in the field of topological states of matter(1,2) has largely been initiated by the discovery of bismuth and antimony chalcogenide bulk topological insulators (TIs)(3-6), followed by closely related ternary compounds(7-16) and predictions of several weak TIs(17-19). However, both the conceptual richness of Z$_2$ classification of TIs as well as their structural and compositional diversity are far from being fully exploited. Here, a new Z$_2$ topological insulator is theoretically predicted and experimentally confirmed in the $beta$-phase of quasi-one-dimensional bismuth iodide Bi$_4$I$_4$. The electronic structure of $beta$-Bi$_4$I$_4$, characterized by Z$_2$ invariants (1;110), is in proximity of both the weak TI phase (0;001) and the trivial insulator phase (0;000). Our angle-resolved photoemission spectroscopy measurements on the (001) surface reveal a highly anisotropic band-crossing feature located at the point of the surface Brillouin zone and showing no dispersion with the photon energy, thus being fully consistent with the theoretical prediction.

قيم البحث

اقرأ أيضاً

Quasi-one-dimensional (1D) materials provide a superior platform for characterizing and tuning topological phases for two reasons: i) existence for multiple cleavable surfaces that enables better experimental identification of topological classificat ion, and ii) stronger response to perturbations such as strain for tuning topological phases compared to higher dimensional crystal structures. In this paper, we present experimental evidence for a room-temperature topological phase transition in the quasi-1D material Bi$_4$I$_4$, mediated via a first order structural transition between two distinct stacking orders of the weakly-coupled chains. Using high resolution angle-resolved photoemission spectroscopy on the two natural cleavable surfaces, we identify the high temperature $beta$ phase to be the first weak topological insulator with gapless Dirac cones on the (100) surface and no Dirac crossing on the (001) surface, while in the low temperature $alpha$ phase, the topological surface state on the (100) surface opens a gap, consistent with a recent theoretical prediction of a higher-order topological insulator beyond the scope of the established topological materials databases that hosts gapless hinge states. Our results not only identify a rare topological phase transition between first-order and second-order topological insulators but also establish a novel quasi-1D material platform for exploring unprecedented physics.
The major breakthroughs in the understanding of topological materials over the past decade were all triggered by the discovery of the Z$_2$ topological insulator (TI). In three dimensions (3D), the TI is classified as either strong or weak, and exper imental confirmations of the strong topological insulator (STI) rapidly followed the theoretical predictions. In contrast, the weak topological insulator has so far eluded experimental verification, since the topological surface states emerge only on particular side surfaces which are typically undetectable in real 3D crystals. Here we provide experimental evidence for the WTI state in a bismuth iodide, $beta$-Bi4I4. Significantly, the crystal has naturally cleavable top and side planes both stacked via van-der-Waals forces, which have long been desirable for the experimental realization of the WTI state. As a definitive signature of it, we find quasi-1D Dirac TSS at the side-surface (100) while the top-surface (001) is topologically dark. Furthermore, a crystal transition from the $beta$- to $alpha$-phase drives a topological phase transition from a nontrivial WTI to the trivial insulator around room temperature. This topological phase, viewed as quantum spin Hall (QSH) insulators stacked three-dimensionally, and excellent functionality with on/off switching will lay a foundation for new technology benefiting from highly directional spin-currents with large density protected against backscattering.
88 - A. Pisoni , R. Gaal , A. Zeugner 2017
We report a detailed study of the transport coefficients of $beta$-Bi$_4$I$_4$ quasi-one dimensional topological insulator. Electrical resistivity, thermoelectric power, thermal conductivity and Hall coefficient measurements are consistent with the p ossible appearance of a charge density wave order at low temperatures. Both electrons and holes contribute to the conduction in $beta$-Bi$_4$I$_4$ and the dominant type of charge carrier changes with temperature as a consequence of temperature-dependent carrier densities and mobilities. Measurements of resistivity and Seebeck coefficient under hydrostatic pressure up to 2 GPa show a shift of the charge density wave order to higher temperatures suggesting a strongly one-dimensional character at ambient pressure. Surprisingly, superconductivity is induced in $beta$-Bi$_4$I$_4$ above 10 GPa with of 4.0 K which is slightly decreasing upon increasing the pressure up to 20 GPa. Chemical characterisation of the pressure-treated samples shows amorphization of $beta$-Bi$_4$I$_4$ under pressure and rules out decomposition into Bi and BiI$_3$ at room-temperature conditions.
Two-dimensional topological insulator features time-reversal-invariant spin-momentum-locked one-dimensional (1D) edge states with a linear energy dispersion. However, experimental access to 1D edge states is still of great challenge and only limited to few techniques to date. Here, by using infrared absorption spectroscopy, we observed robust topologically originated edge states in a-Bi4Br4 belts with definitive signature of strong infrared absorption at belt sides and distinct anisotropy with respect to light polarizations, which is further supported by first-principles calculations. Our work demonstrates for the first time that the infrared spectroscopy can offer a power-efficient approach in experimentally probing 1D edge states of topological materials.
Subvalent bismuth centers (interstitial $Bi^{+}$ ion, Bi$_5^{3+}$ cluster ion, and Bi$_4^0$ cluster) are examined as possible centers of broadband near-IR luminescence in bismuth-doped solids on the grounds of quantum-chemical modeling and experimental data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا