ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermodynamic stability of black holes surrounded by quintessence

116   0   0.0 ( 0 )
 نشر من قبل Meng-Sen Ma
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the thermodynamic stabilities of uncharged and charged black holes surrounded by quintessence (BHQ) by means of effective thermodynamic quantities. When the state parameter of quintessence $omega_q$ is appropriately chosen, the structures of BHQ are something like that of black holes in de Sitter space. Constructing the effective first law of thermodynamics in two different ways, we can derive the effective thermodynamic quantities of BHQ. Especially, these effective thermodynamic quantities also satisfy Smarr-like formulae. It is found that the uncharged BHQ is always thermodynamically unstable due to negative heat capacity, while for the charged BHQ there are phase transitions of the second order. We also show that there is a great deal of difference on the thermodynamic properties and critical behaviors of BHQ between the two ways we employed.



قيم البحث

اقرأ أيضاً

Basing on the ideas used by Kiselev, we study the Hayward black hole surrounded by quintessence. By setting for the quintessence state parameter at the special case of $omega=-frac{2}{3}$, using the metric of the black hole surrounded by quintessence and the definition of the effective potential, we analyzed in detail the null geodesics for different energies. We also analyzed the horizons of the Hayward black hole surrounded by quintessence as well as the shadow of the black hole.
In this paper we analyze the propagation of a charged scalar field in a Reissner-Nordstrom black hole endowed with one anisotropic fluid that can play the role of a cosmological term for certain set of parameters. The evolution of a scalar wave scatt ering is examined giving rise to the same superradiant scattering condition as in the de Sitter case. In addition, an analysis of the modes coming from the application of quasinormal boundary conditions is presented. Some special cases displaying analytical solutions for the quasinormal frequencies are discussed. Moreover, the superradiant condition is adapted to the quasinormal problem triggering unstable modes, what is confirmed by our numerical analysis.
We present a solution of Einstein equations with quintessential matter surrounding a $d$-dimensional black hole, whose asymptotic structures are determined by the state of the quintessential matter. We examine the thermodynamics of this black hole an d find that the mass of the black hole depends on the equation of state of the quintessence, while the first law is universal. Investigating the Hawking radiation in this black hole background, we observe that the Hawking radiation dominates on the brane in the low-energy regime. For different asymptotic structures caused by the equation of state of the quintessential matter surrounding the black hole, we learn that the influences by the state parameter of the quintessence on Hawking radiation are different.
We study some properties of the extended phase space of a quantum-corrected Schwarzschild black hole surrounded by a perfect fluid. In particular we demonstrate that, due to the quantum correction, there exist first and second order phase transitions for a certain range of the state parameter of the perfect fluid, and we explicitly analyze some cases. Besides that, we describe the efficiency of this system as a heat engine and the effect of quantum corrections for different surrounding fluids.
128 - Peng Wang , Feiyu Yao 2021
Recently, the phase space of black holes in a spherical cavity of radius $r_{B}$ has been extended by introducing a thermodynamic volume $Vequiv4pi r_{B}^{3}/3$. In the extended phase space, we consider the thermodynamic geometry, which provides a po werful tool to understand the microscopic structure of black holes, of Reissner-Nordstr{o}m (RN) black holes in a cavity, as well as that of Reissner-Nordstr{o}m-AdS black holes. Although the phase structures of the cavity and AdS cases show striking resemblance, we find that there exist significant differences between the thermodynamic geometries of these two cases. In particular, a reentrant transition of the type of the microstructure interactions, i.e., repulsive $rightarrow$ attractive $rightarrow$ repulsive with increasing temperature in an isobaric process, is observed for RN black holes in a cavity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا