ترغب بنشر مسار تعليمي؟ اضغط هنا

The effect of electron-phonon interaction on the thermoelectric properties of defect zigzag nanoribbons

504   0   0.0 ( 0 )
 نشر من قبل Dmitry Kolesnikov
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Thermoelectric properties of graphene nanoribbons with periodic edge vacancies and antidot lattice are investigated. The electron-phonon interaction is taken into account in the framework of the Hubbard-Holstein model with the use of the Lang-Firsov unitary transformation scheme. The electron transmission function, the thermopower and the thermoelectric figure of merit are calculated. We have found that the electron-phonon interaction causes a decrease in the peak values of the thermoelectric figure of merit and the shift of the peak positions closer to the center of the bandgap. The effects are more pronounced for the secondary peaks that appear in the structures with periodic antidot.



قيم البحث

اقرأ أيضاً

Using first-principles calculations combined with Boltzmann transport theory, we investigate the effects of topological edge states on the thermoelectric properties of Bi nanoribbons. It is found that there is a competition between the edge and bulk contributions to the Seebeck coefficients. However, the electronic transport of the system is dominated by the edge states because of its much larger electrical conductivity. As a consequence, a room temperature value exceeding 3.0 could be achieved for both p- and n-type systems when the relaxation time ratio between the edge and the bulk states is tuned to be 1000. Our theoretical study suggests that the utilization of topological edge states might be a promising approach to cross the threshold of the industrial application of thermoelectricity.
The influence of periodic edge vacancies and antidot arrays on the thermoelectric properties of zigzag graphene nanoribbons is investigated. Using the Greens function method, the tight-binding approximation for the electron Hamiltonian and the 4th ne arest neighbor approximation for the phonon dynamical matrix, we calculate the Seebeck coefficient and the thermoelectric figure of merit. It is found that, at a certain periodic arrangement of vacancies on both edges of zigzag nanoribbon, a finite band gap opens and almost twofold degenerate energy levels appear. As a result, a marked increase in the Seebeck coefficient takes place. It is shown that an additional enhancement of the thermoelectric figure of merit can be achieved by a combination of periodic edge defects with an antidot array.
Thermoelectric properties of the chemically-doped intermetallic narrow-band semiconductor FeGa3 are reported. The parent compound shows semiconductor-like behavior with a small band gap (Eg = 0.2 eV), a carrier density of ~ 10(18) cm-3 and, a large n -type Seebeck coefficient (S ~ -400 mu V/K) at room temperature. Hall effect measurements indicate that chemical doping significantly increases the carrier density, resulting in a metallic state, while the Seebeck coefficient still remains fairly large (~ -150 mu V/K). The largest power factor (S2/{rho} = 62 mu W/m K2) and corresponding figure of merit (ZT = 0.013) at 390 K were observed for Fe0.99Co0.01(Ga0.997Ge0.003)3.
We investigate the transport properties of pristine zigzag-edged borophene nanoribbons (ZBNRs) of different widths, using the fist-principles calculations. We choose ZBNRs with widths of 5 and 6 as odd and even widths. The differences of the quantum transport properties are found, where even-N BNRs and odd-N BNRs have different current-voltage relationships. Moreover, the negative differential resistance (NDR) can be observed within certain bias range in 5-ZBNR, while 6-ZBNR behaves as metal whose current rises with the increase of the voltage. The spin filter effect of 36% can be revealed when the two electrodes have opposite magnetization direction. Furthermore, the magnetoresistance effect appears to be in even-N ZBNRs, and the maximum value can reach 70%.
It is well known that the efficiency of a good thermoelectric material should be optimized with respect to doping concentration. However, much less attention has been paid to the optimization of the dopants energy level. Thermoelectric materials dope d with shallow levels may experience a dramatic reduction in their figures of merit at high temperatures due to the excitation of minority carriers that reduces the Seebeck coefficient and increases bipolar heat conduction. Doping with deep level impurities can delay the excitation of minority carriers as it requires a higher temperature to ionize all dopants. We find through modeling that, depending on the material type and temperature range of operation, different impurity levels (shallow or deep) will be desired to optimize the efficiency of a thermoelectric material. For different materials, we further clarify where the most preferable position of the impurity level within the band gap falls. Our research provides insights in choosing the most appropriate dopants for a thermoelectric material in order to maximize the device efficiency.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا