ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploring the accretion model of M87 and 3C 84 with the Faraday rotation measure observations

41   0   0.0 ( 0 )
 نشر من قبل Ya-Ping Li
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Low-luminosity active galactic nuclei (LLAGNs) are believed to be powered by an accretion-jet model, consisting of an inner advection-dominated accretion flow (ADAF), an outer truncated standard thin disk, and a jet. But model degeneracy still exists in this framework. For example, the X-ray emission can originate from either the ADAF or jet. The aim of the present work is to check these models with the Faraday rotation measure (RM) observations recently detected for two LLAGNs, M87 and 3C 84, in the sub-mm band. For M87, we find that the RM predicted by the model in which the X-ray emission originates from the ADAF is larger than the observed upper limit of RM by over two orders of magnitude, while the model in which the X-ray emission originates from the jet predicts a RM lower than the observed upper limit. For 3C 84, the sub-mm emission is found to be dominated by the jet component, while the Faraday screen is attributed to the ADAFs. This scenario can naturally explain the observed {it external} origin of the RM and why RM is found to be stable during a two-year interval although the sub-mm emission increases at the same period.



قيم البحث

اقرأ أيضاً

Using high frequency (12-22 GHz) VLBA observations we confirm the existence of a Faraday rotation measure gradient of ~ 500 rad/m^2/mas transverse to the jet axis in the quasar 3C 273. The gradient is seen in two epochs spaced roughly six months apar t. This stable transverse rotation measure gradient is expected if a helical magnetic field wraps around the jet. The overall order to the magnetic field in the inner projected 40 parsecs is consistent with a helical field. However, we find an unexpected increase in fractional polarization along the edges of the source, contrary to expectations. This high fractional polarization rules out internal Faraday rotation, but is not readily explained by a helical field. After correcting for the rotation measure, the intrinsic magnetic field direction in the jet of 3C 273 changes from parallel to nearly perpendicular to the projected jet motion at two locations. If a helical magnetic field causes the observed rotation measure gradient then the synchrotron emitting electrons must be separate from the helical field region. The presence or absence of transverse rotation measure gradients in other sources is also discussed.
Faraday Rotation Measure (RM) Synthesis, as a method for analyzing multi-channel observations of polarized radio emission to investigate galactic magnetic fields structures, requires the definition of complex polarized intensity in the range of the n egative lambda square. We introduce a simple method for continuation of the observed complex polarized intensity into this domain using symmetry arguments. The method is suggested in context of magnetic field recognition in galactic disks where the magnetic field is supposed to have a maximum in the equatorial plane. The method is quite simple when applied to a single Faraday-rotating structure on the line of sight. Recognition of several structures on the same line of sight requires a more sophisticated technique. We also introduce a wavelet-based algorithm which allows us to consider a set of isolated structures. The method essentially improves the possibilities for reconstruction of complicated Faraday structures using the capabilities of modern radio telescopes.
3C 84 (NGC 1275) is a well-studied mis-aligned Active Galactic Nucleus (AGN), which has been active in Gamma rays since at least 2008. We have monitored the source at four wavelengths (14 mm, 7 mm, 3 mm and 2 mm) using the Korean VLBI network (KVN) s ince 2013 as part of the interferometric monitoring of $gamma$-ray bright AGN (iMOGABA) program. 3C 84 exhibits bright radio emission both near the central supermassive black hole (SMBH) feature known as C1 and from a moving feature located to the south known as C3. Other facilities have also detected these short-term variations above a slowly rising trend at shorter wavelengths, such as in Gamma ray and 1 mm total intensity light-curves. We find that the variations in the $gamma$ rays and 1 mm total intensity light-curves are correlated, with the $gamma$ rays leading and lagging the radio emission. Analysis of the 2 mm KVN data shows that both the Gamma rays and 1 mm total intensity short-term variations are better correlated with the SMBH region than C3, likely placing the short-term variations in C1. We interpret the emission as being due to the random alignment of spatially separated emission regions. We place the slowly rising trend in C3, consistent with previous results. Additionally, we report that since mid-2015, a large mm-wave radio flare has been occurring in C3, with a large Gamma ray flare coincident with the onset of this flare at all radio wavelengths.
123 - C. Y. Kuo , K. Asada , R. Rao 2014
We present the first constraint on Faraday rotation measure (RM) at submillimeter wavelengths for the nucleus of M 87. By fitting the polarization position angles ($chi$) observed with the SMA at four independent frequencies around $sim$230 GHz and i nterpreting the change in $chi$ as a result of emph{external} Faraday rotation associated with accretion flow, we determine the rotation measure of the M 87 core to be between $-$7.5$times$10$^{5}$ and 3.4$times$10$^{5}$ rad/m$^{2}$. Assuming a density profile of the accretion flow that follows a power-law distribution and a magnetic field that is ordered, radial, and has equipartition strength, the limit on the rotation measure constrains the mass accretion rate $dot{M}$ to be below 9.2$times$10$^{-4}$ M$_{odot}$~yr$^{-1}$ at a distance of 21 Schwarzchild radii from the central black hole. This value is at least two orders of magnitude smaller than the Bondi accretion rate, suggesting significant suppression of the accretion rate in the inner region of the accretion flow. Consequently, our result disfavors the classical emph{advection dominated accretion flow} (ADAF) and prefers the emph{adiabatic inflow-outflow solution} (ADIOS) or emph{convection-dominated accretion flow} (CDAF) for the hot accretion flow in M 87.
Nearby radio galaxies that contain jets are extensively studied with VLBI, addressing jet launching and the physical mechanisms at play around massive black holes. 3C 84 is unique in this regard, because the combination of its proximity and large SMB H mass provides a high spatial resolution to resolve the complex structure at the jet base. For 3C 84 an angular scale of 50 ${mu}$as corresponds to 200 - 250 Schwarzschild radii ($R_s$). Recent RadioAstron VLBI imaging at 22 GHz revealed an east-west elongated feature at the northern end of the VLBI jet, which challenges interpretations. Here we propose instead that the jet apex is not located within the 22 GHz VLBI core region but more upstream of the jet. We base our arguments on a 2D cross-correlation analysis of quasi-simultaneously obtained VLBI images at 15, 43, and 86 GHz, which measures the opacity shift of the VLBI core in 3C 84. With the assumption of the power law index ($k_r$) of the core shift being set to 1, we find the jet apex to be located $83 pm 7$ ${mu}$as north (upstream) of the 86 GHz VLBI core. Depending on the assumptions for $k_r$ and the particle number density power law index n, we find a mixed toroidal/poloidal magnetic field configuration, consistent with a region which is offset from the central engine by about 400-1500 $R_s$. The measured core shift is then used to estimate the magnetic field strength, which amounts to B = 1.80 - 4.0 G near the 86 GHz VLBI core. We discuss some physical implications of these findings.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا