ﻻ يوجد ملخص باللغة العربية
We have obtained multi-wavelength observations of compact Galactic planetary nebulae (PNe) to probe post-Asymptotic Giant Branch (AGB) evolution from the onset of nebular ejection. We analyze new observations from HST to derive the masses and evolutionary status of their central stars (CSs) in order to better understand the relationship between the CS properties and those of the surrounding nebulae. We also compare this sample with others we obtained using the same technique in different metallicity environments: the Large and Small Magellanic Clouds. We work with HST/WFC3 images of 51 targets obtained in a snapshot survey (GO-11657). The high spatial resolution of HST allows us to resolve these compact PNe and distinguish the CS emission from that of their surrounding PNe. The targets were imaged through the filters F200LP, F350LP, and F814W from which we derive Johnson V and I magnitudes. We derive CS bolometric luminosities and effective temperatures using the Zanstra technique, from a combination of HST photometry and ground-based spectroscopic data. We present new unique photometric measurements of 50 CSs, and derived effective temperatures and luminosities for most of them. Central star masses for 23 targets were derived by placing the stars on a temperature-luminosity diagram and compare their location with the best available single star post-AGB evolutionary tracks, the remaining masses were indeterminate most likely because of underestimates of the stellar temperature, or because of substantial errors in the adopted statistical distances to these objects. The distribution of CS masses in the sample of compact PNe is different than sample in the LMC and SMC, but with a median mass of 0.59 solar masses it is similar to other Galactic samples. We conclude that the compact nature of many of the PNe is a result of their large distance, rather than their physical dimension.
Stellar post asymptotic giant branch (post-AGB) evolution can be completely altered by a final thermal pulse (FTP) which may occur when the star is still leaving the AGB (AFTP), at the departure from the AGB at still constant luminosity (late TP, LTP
While most of the low-mass stars stay hydrogen-rich on their surface throughout their evolution, a considerable fraction of white dwarfs as well as central stars of planetary nebulae have a hydrogen-deficient surface composition. The majority of thes
The evolution of central stars of planetary nebulae was so far documented in just a few cases. However, spectra collected a few decades ago may provide a good reference for studying the evolution of central stars using the emission line fluxes of the
During the past 20 years, the idea that non-spherical planetary nebulae (PN) may need a binary or planetary interaction to be shaped was discussed by various authors. It is now generally agreed that the varied morphologies of PN cannot be fully expla
Most of the planetary nebulae (PN) have bipolar or other non-spherically symmetric shapes. The presence of a magnetic field in the central star may be the reason for this lack of symmetry, but observational works published in the literature have so f