ﻻ يوجد ملخص باللغة العربية
We give another proof, using tools from Geometric Invariant Theory, of a result due to S. Sam and A. Snowden in 2014, concerning the stability of Kro-necker coefficients. This result states that some sequences of Kronecker coefficients eventually stabilise, and our method gives a nice geometric bound from which the stabilisation occurs. We perform the explicit computation of such a bound on two examples, one being the classical case of Murnaghans stability. Moreover, we see that our techniques apply to other coefficients arising in Representation Theory: namely to some plethysm coefficients and in the case of the tensor product of representations of the hyperoctahedral group.
The computation of Kronecker coefficients is a challenging problem with a variety of applications. In this paper we present an approach based on methods from symplectic geometry and residue calculus. We outline a general algorithm for the problem and
These notes are an expanded version of a talk given by the second author. Our main interest is focused on the challenging problem of computing Kronecker coefficients. We decided, at the beginning, to take a very general approach to the problem of stu
Quiver Grassmannians and quiver flags are natural generalisations of usual Grassmannians and flags. They arise in the study of quiver representations and Hall algebras. In general, they are projective varieties which are neither smooth nor irreducibl
Ensilication is a technology we developed that can physically stabilise proteins in silica without use of a pre-formed particle matrix. Stabilisation is done by tailor fitting individual proteins with a silica coat using a modified sol-gel process. B
The article is a contribution to the local theory of geometric Langlands correspondence. The main result is a categorification of the isomorphism between the (extended) affine Hecke algebra, thought of as an algebra of Iwahori bi-invariant functions