ﻻ يوجد ملخص باللغة العربية
We show that if the $alpha$-attractor model is realized by the spontaneous breaking of the scale symmetry, then the stability and the dynamics of the vector field that gauges the scale symmetry can severely constrain the $alpha$-parameter as $5/6 < alpha < 1$ restricting the inflationary predictions in a very tiny region in the $n_s - r$ plane that are in great agreement with the latest Planck data. Although the different values of $alpha$ do not make a tangible difference for $n_s$ and $r$, they provide radically different scenarios for the post-inflationary dynamics which determines the standard BBN processes and the large scale isotropy of the universe.
We analyze and compare the multi-field dynamics during inflation and preheating in symmetric and asymmetric models of $alpha$-attractors, characterized by a hyperbolic field-space manifold. We show that the generalized (asymmetric) E- and (symmetric)
We present a comparative analysis of observational low-redshift background constraints on three candidate models for explaining the low-redshift acceleration of the universe. The generalized coupling model by Feng and Carloni and the scale invariant
We propose fundamental scale invariance as a new theoretical principle beyond renormalizability. Quantum field theories with fundamental scale invariance admit a scale-free formulation of the functional integral and effective action in terms of scale
We consider cosmological inflationary models in which vector fields play some role in the generation of the primordial curvature perturbation $zeta$. Such models are interesting because the involved vector fields naturally seed statistical anisotropy
We consider a model of inflation consisting a triplet of $U(1)$ vector fields with the parity violating interaction which is non-minimally coupled to inflaton. The vector field sector enjoys global $O(3)$ symmetry which admits isotropic configuration