ﻻ يوجد ملخص باللغة العربية
We prove a system of relations in the Grothendieck ring of the category O of representations of the Borel subalgebra of an untwisted quantum affine algebra U_q(g^) introduced in [HJ]. This system was discovered in [MRV1, MRV2], where it was shown that solutions of this system can be attached to certain affine opers for the Langlands dual affine Kac-Moody algebra of g^, introduced in [FF5]. Together with the results of [BLZ3, BHK], which enable one to associate quantum g^-KdV Hamiltonians to representations from the category O, this provides strong evidence for the conjecture of [FF5] linking the spectra of quantum g^-KdV Hamiltonians and affine opers for the Langlands dual affine algebra. As a bonus, we obtain a direct and uniform proof of the Bethe Ansatz equations for a large class of quantum integrable models associated to arbitrary untwisted quantum affine algebras, under a mild genericity condition. We also conjecture analogues of these results for the twisted quantum affine algebras and elucidate the notion of opers for twisted affine algebras, making a connection to twisted opers introduced in [FG].
A special case of the geometric Langlands correspondence is given by the relationship between solutions of the Bethe ansatz equations for the Gaudin model and opers - connections on the projective line with extra structure. In this paper, we describe
For $mathfrak g$ a Kac-Moody algebra of affine type, we show that there is an $text{Aut}, mathcal O$-equivariant identification between $text{Fun},text{Op}_{mathfrak g}(D)$, the algebra of functions on the space of ${mathfrak g}$-opers on the disc, a
We discuss some aspects of the deformed W-algebras W_{q,t}[g]. In particular, we derive an explicit formula for the Kac determinant, and discuss the center when t^2 is a primitive k-th root of unity. The relation of the structure of W_{q,t}[g] to the
We study the moduli spaces of flat SL(r)- and PGL(r)-connections, or equivalently, Higgs bundles, on an algebraic curve. These spaces are noncompact Calabi-Yau orbifolds; we show that they can be regarded as mirror partners in two different senses. F
We describe the possible noncommutative deformations of complex projective three-space by exhibiting the Calabi--Yau algebras that serve as their homogeneous coordinate rings. We prove that the space parametrizing such deformations has exactly six ir