ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectra of quantum KdV Hamiltonians, Langlands duality, and affine opers

135   0   0.0 ( 0 )
 نشر من قبل Edward Frenkel
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove a system of relations in the Grothendieck ring of the category O of representations of the Borel subalgebra of an untwisted quantum affine algebra U_q(g^) introduced in [HJ]. This system was discovered in [MRV1, MRV2], where it was shown that solutions of this system can be attached to certain affine opers for the Langlands dual affine Kac-Moody algebra of g^, introduced in [FF5]. Together with the results of [BLZ3, BHK], which enable one to associate quantum g^-KdV Hamiltonians to representations from the category O, this provides strong evidence for the conjecture of [FF5] linking the spectra of quantum g^-KdV Hamiltonians and affine opers for the Langlands dual affine algebra. As a bonus, we obtain a direct and uniform proof of the Bethe Ansatz equations for a large class of quantum integrable models associated to arbitrary untwisted quantum affine algebras, under a mild genericity condition. We also conjecture analogues of these results for the twisted quantum affine algebras and elucidate the notion of opers for twisted affine algebras, making a connection to twisted opers introduced in [FG].



قيم البحث

اقرأ أيضاً

A special case of the geometric Langlands correspondence is given by the relationship between solutions of the Bethe ansatz equations for the Gaudin model and opers - connections on the projective line with extra structure. In this paper, we describe a deformation of this correspondence for $SL(N)$. We introduce a difference equation version of opers called $q$-opers and prove a $q$-Langlands correspondence between nondegenerate solutions of the Bethe ansatz equations for the XXZ model and nondegenerate twisted $q$-opers with regular singularities on the projective line. We show that the quantum/classical duality between the XXZ spin chain and the trigonometric Ruijsenaars-Schneider model may be viewed as a special case of the $q$-Langlands correspondence. We also describe an application of $q$-opers to the equivariant quantum $K$-theory of the cotangent bundles to partial flag varieties.
140 - Charles A. S. Young 2020
For $mathfrak g$ a Kac-Moody algebra of affine type, we show that there is an $text{Aut}, mathcal O$-equivariant identification between $text{Fun},text{Op}_{mathfrak g}(D)$, the algebra of functions on the space of ${mathfrak g}$-opers on the disc, a nd $Wsubset pi_0$, the intersection of kernels of screenings inside a vacuum Fock module $pi_0$. This kernel $W$ is generated by two states: a conformal vector, and a state $delta_{-1}left|0right>$. We show that the latter endows $pi_0$ with a canonical notion of translation $T^{text{(aff)}}$, and use it to define the densities in $pi_0$ of integrals of motion of classical Conformal Affine Toda field theory. The $text{Aut},mathcal O$-action defines a bundle $Pi$ over $mathbb P^1$ with fibre $pi_0$. We show that the product bundles $Pi otimes Omega^j$, where $Omega^j$ are tensor powers of the canonical bundle, come endowed with a one-parameter family of holomorphic connections, $ abla^{text{(aff)}} - alpha T^{text{(aff)}}$, $alphain mathbb C$. The integrals of motion of Conformal Affine Toda define global sections $[mathbf v_j dt^{j+1} ] in H^1(mathbb P^1, Piotimes Omega^j, abla^{text{(aff)}})$ of the de Rham cohomology of $ abla^{mathrm{(aff)}}$. Any choice of ${mathfrak g}$-Miura oper $chi$ gives a connection $ abla^{mathrm{(aff)}}_chi$ on $Omega^j$. Using coinvariants, we define a map $mathsf F_chi$ from sections of $Pi otimes Omega^j$ to sections of $Omega^j$. We show that $mathsf F_chi abla^{text{(aff)}} = abla^{text{(aff)}}_chi mathsf F_chi$, so that $mathsf F_chi$ descends to a well-defined map of cohomologies. Under this map, the classes $[mathbf v_j dt^{j+1} ]$ are sent to the classes in $H^1(mathbb P^1, Omega^j, abla^{text{(aff)}}_chi)$ defined by the ${mathfrak g}$-oper underlying $chi$.
111 - P. Bouwknegt , K. Pilch 1998
We discuss some aspects of the deformed W-algebras W_{q,t}[g]. In particular, we derive an explicit formula for the Kac determinant, and discuss the center when t^2 is a primitive k-th root of unity. The relation of the structure of W_{q,t}[g] to the representation ring of the quantum affine algebra U_q(hat g), as discovered recently by Frenkel and Reshetikhin, is further elucidated in some examples.
We study the moduli spaces of flat SL(r)- and PGL(r)-connections, or equivalently, Higgs bundles, on an algebraic curve. These spaces are noncompact Calabi-Yau orbifolds; we show that they can be regarded as mirror partners in two different senses. F irst, they satisfy the requirements laid down by Strominger-Yau-Zaslow (SYZ), in a suitably general sense involving a B-field or flat unitary gerbe. To show this, we use their hyperkahler structures and Hitchins integrable systems. Second, their Hodge numbers, again in a suitably general sense, are equal. These spaces provide significant evidence in support of SYZ. Moreover, they throw a bridge from mirror symmetry to the duality theory of Lie groups and, more broadly, to the geometric Langlands program.
255 - Brent Pym 2014
We describe the possible noncommutative deformations of complex projective three-space by exhibiting the Calabi--Yau algebras that serve as their homogeneous coordinate rings. We prove that the space parametrizing such deformations has exactly six ir reducible components, and we give explicit presentations for the generic members of each family in terms of generators and relations. The proof uses deformation quantization to reduce the problem to a similar classification of unimodular quadratic Poisson structures in four dimensions, which we extract from Cerveau and Lins Netos classification of degree-two foliations on projective space. Corresponding to the ``exceptional component in their classification is a quantization of the third symmetric power of the projective line that supports bimodule quantizations of the classical Schwarzenberger bundles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا