ترغب بنشر مسار تعليمي؟ اضغط هنا

Planck intermediate results. XLV. Radio spectra of northern extragalactic radio sources

101   0   0.0 ( 0 )
 نشر من قبل Anne L\\\"ahteenm\\\"aki
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Continuum spectra covering centimetre to submillimetre wavelengths are presented for a northern sample of 104 extragalactic radio sources, mainly active galactic nuclei, based on four-epoch Planck data. The nine Planck frequencies, from 30 to 857 GHz, are complemented by a set of simultaneous ground-based radio observations between 1.1 and 37 GHz. The single-survey Planck data confirm that the flattest high-frequency radio spectral indices are close to zero, indicating that the original accelerated electron energy spectrum is much harder than commonly thought, with power-law index around 1.5 instead of the canonical 2.5. The radio spectra peak at high frequencies and exhibit a variety of shapes. For a small set of low-z sources, we find a spectral upturn at high frequencies, indicating the presence of intrinsic cold dust. Variability can generally be approximated by achromatic variations, while sources with clear signatures of evolving shocks appear to be limited to the strongest outbursts.



قيم البحث

اقرأ أيضاً

Spectral energy distributions (SEDs) and radio continuum spectra are presented for a northern sample of 104 extragalactic radio sources, based on the Planck Early Release Compact Source Catalogue (ERCSC) and simultaneous multifrequency data. The nine Planck frequencies, from 30 to 857 GHz, are complemented by a set of simultaneous observations ranging from radio to gamma-rays. This is the first extensive frequency coverage in the radio and millimetre domains for an essentially complete sample of extragalactic radio sources, and it shows how the individual shocks, each in their own phase of development, shape the radio spectra as they move in the relativistic jet. The SEDs presented in this paper were fitted with second and third degree polynomials to estimate the frequencies of the synchrotron and inverse Compton (IC) peaks, and the spectral indices of low and high frequency radio data, including the Planck ERCSC data, were calculated. SED modelling methods are discussed, with an emphasis on proper, physical modelling of the synchrotron bump using multiplecomponents. Planck ERCSC data also suggest that the original accelerated electron energy spectrum could be much harder than commonly thought, with power-law index around 1.5 instead of the canonical 2.5. The implications of this are discussed for the acceleration mechanisms effective in blazar shock. Furthermore in many cases the Planck data indicate that gamma-ray emission must originate in the same shocks that produce the radio emission.
We report quasi-simultaneous GMRT observations of seven extragalactic radio sources at 150, 325, 610 and 1400 MHz, in an attempt to accurately define their radio continuum spectra, particularly at frequencies below the observed spectral turnover. We had previously identified these sources as candidates for a sharply inverted integrated radio spectrum whose slope is close to, or even exceeds $alpha_c$ = +2.5, the theoretical limit due to synchrotron self-absorption (SSA) in a source of incoherent synchrotron radiation arising from relativistic particles with the canonical (i.e., power-law) energy distribution. We find that four out of the seven candidates have an inverted radio spectrum with a slope close to or exceeding +2.0, while the critical spectral slope $alpha_c$ is exceeded in at least one case. These sources, together with another one or two reported in very recent literature, may well be the archetypes of an extremely rare class, from the standpoint of violation of the SSA limit in compact extragalactic radio sources. However, the alternative possibility that free-free absorption is responsible for their ultra-sharp spectral turnover cannot yet be discounted.
We present a new catalogue of ALMA observations of 3,364 bright, compact radio sources, mostly blazars, used as calibrators. These sources were observed between May 2011 and July 2018, for a total of 47,115 pointings in different bands and epochs. We have exploited the ALMA data to validate the photometry given in the new Planck Multi-frequency Catalogue of Non-thermal sources (PCNT), for which an external validation was not possible so far. We have also assessed the positional accuracy of Planck catalogues and the PCNT completeness limits, finding them to be consistent with those of the Second Planck Catalogue of Compact Sources. The ALMA continuum spectra have allowed us to extrapolate the observed radio source counts at 100 GHz to the effective frequencies of ALMA bands 4, 6, 7, 8 and 9 (145, 233, 285, 467 and 673 GHz, respectively), where direct measurements are scanty, especially at the 3 highest frequencies. The results agree with the predictions of the Tucci et al. model C2Ex, while the model C2Co is disfavoured.
The data reported in Plancks Early Release Compact Source Catalogue (ERCSC) are exploited to measure the number counts (dN/dS) of extragalactic radio sources at 30, 44, 70, 100, 143 and 217 GHz. Due to the full-sky nature of the catalogue, this measu rement extends to the rarest and brightest sources in the sky. At lower frequencies (30, 44, and 70 GHz) our counts are in very good agreement with estimates based on WMAP data, being somewhat deeper at 30 and 70 GHz, and somewhat shallower at 44 GHz. Plancks source counts at 143 and 217 GHz join smoothly with the fainter ones provided by the SPT and ACT surveys over small fractions of the sky. An analysis of source spectra, exploiting Plancks uniquely broad spectral coverage, finds clear evidence of a steepening of the mean spectral index above about 70 GHz. This implies that, at these frequencies, the contamination of the CMB power spectrum by radio sources below the detection limit is significantly lower than previously estimated.
We present here an extension of our search for EISERS (Extremely Inverted Spectrum Extragalactic Radio Sources) to the northern hemisphere. With an inverted radio spectrum of slope $alpha$ $>$ + 2.5, these rare sources would either require a non-stan dard particle acceleration mechanism (in the framework of synchrotron self-absorption hypothesis), or a severe free-free absorption which attenuates practically all of their synchrotron radiation at metre wavelengths. A list of 15 EISERS candidates is presented here. It was assembled by applying a sequence of selection filters, starting with the two available large-sky radio surveys, namely the WENSS (325 MHz) and the ADR-TGSS (150 MHz). These surveys offer the twin advantages of being fairly deep (typical rms $<$ 10 mJy/beam) and having a sub-arcminute resolution. Their zone of overlap spreads over 1.3$pi$ steradian in the northern hemisphere. Radio spectra are presented for the entire sample of 15 EISERS candidates, of which 8 spectra are of GPS type. Eleven members of the sample are associated with previously known quasars. Information on the parsec-scale radio structure, available for several of these sources, is also summarized.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا