ترغب بنشر مسار تعليمي؟ اضغط هنا

THGEM gain calculations using Garfield++: Solving discrepancies between the simulation and experimental data

98   0   0.0 ( 0 )
 نشر من قبل Carlos Azevedo
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Discrepancies between the measured and simulated gain in Thick Micropatterned gaseous detectors (MPGD), namely THGEM, have been observed by several groups. In order to simulate the electron avalanches and the gain the community relies on the calculations performed in Garfield++, known to produce differences of 2 orders of magnitude in comparison to the experimental data for thick MPGDs. In this work, simulations performed for Ne/5%CH4, Ar/5%CH4 and Ar/30%CO2 mixtures shows that Garfield++ is able to perfectly describe the experimental data if Penning effect is included in the simulation. The comparison between the number of excitations which may lead to a Penning transfer, is shown for THGEM and GEM, explaining the less pronounced gain discrepancies observed in GEM.

قيم البحث

اقرأ أيضاً

Charging-up processes affecting gain stability in Thick Gas Electron Multipliers (THGEM) were studied with a dedicated simulation toolkit. Integrated with Garfield++, it provides an effective platform for systematic phenomenological studies of chargi ng-up processes in MPGD detectors. We describe the simulation tool and the fine-tuning of the step-size required for the algorithm convergence, in relation to physical parameters. Simulation results of gain stability over time in THGEM detectors are presented, exploring the role of electrode-thickness and applied voltage on its evolution. The results show that the total amount of irradiated charge through electrodes hole needed for reaching gain stabilization is in the range of tens to hundreds of pC, depending on the detector geometry and operational voltage. These results are in agreement with experimental observations presented previously.
266 - Tao Yang , Kewei Wu , Mei Zhao 2021
We report a precise TCAD simulation for low gain avalanche detector (LGAD) with calibration by secondary ion mass spectroscopy (SIMS). The radiation model - LGAD Radiation Damage Model (LRDM) combines local acceptor degeneration with global deep ener gy levels is proposed. The LRDM could predict the leakage current level and the behavior of capacitance for irradiated LGAD sensor at -30 $^{circ}$C after irradiation fluence $rm Phi_{eq}=2.5 times 10^{15} ~n_{eq}/cm^{2}$.
The operation of Thick Gaseous Electron Multipliers (THGEM) in Ne and Ne/CH4 mixtures, features high multiplication factors at relatively low operation potentials, in both single- and double-THGEM configurations. We present some systematic data measu red with UV-photons and soft x-rays, in various Ne mixtures. It includes gain dependence on hole diameter and gas purity, photoelectron extraction efficiency from CsI photocathodes into the gas, long-term gain stability and pulse rise-time. Position resolution of a 100x100 mm^2 X-rays imaging detector is presented. Possible applications are discussed.
A software package for modeling segmented High-Purity Segmented Germanium detectors, AGATAGeFEM, is presented. The choices made for geometry implementation and the calculations of the electric and weighting fields are discussed. Models used for charg e-carrier velocities are described. Numerical integration of the charge-carrier transport equation is explained. Impact of noise and crosstalk on the achieved position resolution in AGATA detectors are investigated. The results suggest that crosstalk as seen in the AGATA detectors is of minor importance for the position resolution. The sensitivity of the pulse shapes to the parameters in the pulse-shape calculations is determined, this as a function of position in the detectors. Finally, AGATAGeFEM has been used to produce pulse-shape data bases for pulse-shape analyses of experimental data. The results with the new data base indicate improvement with respect to those with the standard AGATA data base.
237 - A.Breskin , R. Alon , M. Cortesi 2008
We briefly review the concept and properties of the Thick GEM (THGEM); it is a robust, high-gain gaseous electron multiplier, manufactured economically by standard printed-circuit drilling and etching technology. Its operation and structure resemble that of GEMs but with 5 to 20-fold expanded dimensions. The millimeter-scale hole-size results in good electron transport and in large avalanche-multiplication factors, e.g. reaching 10^7 in double-THGEM cascaded single-photoelectron detectors. The multipliers material, parameters and shape can be application-tailored; it can operate practically in any counting gas, including noble gases, over a pressure range spanning from 1 mbar to several bars; its operation at cryogenic (LAr) conditions was recently demonstrated. The high gain, sub-millimeter spatial resolution, high counting-rate capability, good timing properties and the possibility of industrial production capability of large-area robust detectors, pave ways towards a broad spectrum of potential applications; some are discussed here in brief.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا