ترغب بنشر مسار تعليمي؟ اضغط هنا

Realization of anomalous multiferroicity in free-standing graphene with magnetic adatoms

57   0   0.0 ( 0 )
 نشر من قبل Antonio Seridonio
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It is generally believed that free-standing graphene does not demonstrate any ferroic properties. In the present work we revise this statement and show that single graphene sheet with a pair of magnetic adatoms can be driven into ferroelectric (FE) and multiferroic (MF) phases by tuning the Dirac cones slope. The transition into the FE phase occurs gradually, but an anomalous MF phase appears abruptly by means of a Quantum Phase Transition. Our findings suggest that such features should exist in graphene recently investigated by Scanning Tunneling Microscopy (Science 352, 437 (2016)).

قيم البحث

اقرأ أيضاً

We examine the exchange Hamiltonian for magnetic adatoms in graphene with localized inner shell states. On symmetry grounds, we predict the existence of a class of orbitals that lead to a distinct class of quantum critical points in graphene, where t he Kondo temperature scales as $T_{K}propto|J-J_{c}|^{1/3}$ near the critical coupling $J_{c}$, and the local spin is effectively screened by a emph{super-ohmic} bath. For this class, the RKKY interaction decays spatially with a fast power law $sim1/R^{7}$. Away from half filling, we show that the exchange coupling in graphene can be controlled across the quantum critical region by gating. We propose that the vicinity of the Kondo quantum critical point can be directly accessed with scanning tunneling probes and gating.
We examine theoretically the signatures of magnetic adatoms in graphene probed by scanning tunneling spectroscopy (STS). When the adatom hybridizes equally with the two graphene sublattices, the broadening of the local adatom level is anomalous and c an scale with the cube of the energy. In contrast to ordinary metal surfaces, the adatom local moment can be suppressed by the proximity of the probing scanning tip. We propose that the dependence of the tunneling conductance on the distance between the tip and the adatom can provide a clear signature for the presence of local magnetic moments. We also show that tunneling conductance can distinguish whether the adatom is located on top of a carbon atom or in the center of a honeycomb hexagon.
By applying tight binding model of adatoms in graphene, we study theoretically the localized aspects of the interaction between transition metal atoms and graphene. Considering the electron-electron interaction by adding a Hubbard term in the mean-fi eld approximation, we find the spin-polarized localized and total density of states. We obtain the coupled system of equations for the occupation number for each spin in the impurity and we study the fixed points of the solutions. By comparing the top site and hollow site adsorption, we show that the anomalous broadening of the latter allows to obtain magnetization for small values of the Hubbard parameter. Finally, we model the magnetic boundaries in order to obtain the range of Fermi energies at which magnetization starts.
An acoustic plasmon is predicted to occur, in addition to the conventional two-dimensional (2D) plasmon, as the collective motion of a system of two types of electronic carriers coexisting in the very same 2D band of extrinsic (doped or gated) graphe ne. The origin of this novel mode resides in the strong anisotropy that is present in the graphene band structure near the Dirac point. This anisotropy allows for the coexistence of carriers moving with two distinct Fermi velocities along the Gamma-K direction, which leads to two modes of collective oscillation: one mode in which the two types of electrons oscillate in phase with one another [this is the conventional 2D graphene plasmon, which at long wavelengths (q->0) has the same dispersion, q^1/2, as the conventional 2D plasmon of a 2D free electron gas], and the other mode found here corresponding to a low-frequency acoustic oscillation [whose energy exhibits at long wavelengths a linear dependence on the 2D wavenumber q] in which the two types of electrons oscillate out of phase. If this prediction is confirmed experimentally, it will represent the first realization of acoustic plasmons originated in the collective motion of a system of two types of carriers coexisting within the very same band.
In this paper, we describe the formation of local resonances in graphene in the presence of magnetic adatoms containing localized orbitals of arbitrary symmetry, corresponding to any given angular momentum state. We show that quantum interference eff ects which are naturally inbuilt in the honeycomb lattice in combination with the specific orbital symmetry of the localized state lead to the formation of fingerprints in differential conductance curves. In the presence of Jahn-Teller distortion effects, which lift the orbital degeneracy of the adatoms, the orbital symmetries can lead to distinctive signatures in the local density of states. We show that those effects allow scanning tunneling probes to characterize adatoms and defects in graphene.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا