ﻻ يوجد ملخص باللغة العربية
Data streaming relies on continuous queries to process unbounded streams of data in a real-time fashion. It is commonly demanding in computation capacity, given that the relevant applications involve very large volumes of data. Data structures act as articulation points and maintain the state of data streaming operators, potentially supporting high parallelism and balancing the work between them. Prompted by this fact, in this work we study and analyze parallelization needs of these articulation points, focusing on the problem of streaming multiway aggregation, where large data volumes are received from multiple input streams. The analysis of the parallelization needs, as well as of the use and limitations of existing aggregate designs and their data structures, leads us to identify needs for proper shared objects that can achieve low-latency and high throughput multiway aggregation. We present the requirements of such objects as abstract data types and we provide efficient lock-free linearizable algorithmic implementations of them, along with new multiway aggregate algorithmic designs that leverage them, supporting both deterministic order-sensitive and order-insensitive aggregate functions. Furthermore, we point out future directions that open through these contributions. The paper includes an extensive experimental study, based on a variety of aggregation continuous queries on two large datasets extracted from SoundCloud, a music social network, and from a Smart Grid network. In all the experiments, the proposed data structures and the enhanced aggregate operators improved the processing performance significantly, up to one order of magnitude, in terms of both throughput and latency, over the commonly-used techniques based on queues.
There has been a significant amount of work in the literature proposing semantic relaxation of concurrent data structures for improving scalability and performance. By relaxing the semantics of a data structure, a bigger design space, that allows wea
A streaming graph is a graph formed by a sequence of incoming edges with time stamps. Unlike static graphs, the streaming graph is highly dynamic and time related. In the real world, the high volume and velocity streaming graphs such as internet traf
In wireless sensor networks (WSNs), the sensed data by sensors need to be gathered, so that one very important application is periodical data collection. There is much effort which aimed at the data collection scheduling algorithm development to mini
We propose the algorithms for performing multiway joins using a new type of coarse grain reconfigurable hardware accelerator~-- ``Plasticine~-- that, compared with other accelerators, emphasizes high compute capability and high on-chip communication
Concurrent linearizable access to shared objects can be prohibitively expensive in a high contention workload. Many applications apply ad-hoc techniques to eliminate the need of synchronous atomic updates, which may result in non-linearizable impleme