ترغب بنشر مسار تعليمي؟ اضغط هنا

Earliest phases of star formation (EPoS): Dust temperature distributions in isolated starless cores

65   0   0.0 ( 0 )
 نشر من قبل Ralf Launhardt
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Constraining the temperature and density structure of dense molecular cloud cores is fundamental for understanding the initial conditions of star formation. We use Herschel observations of the thermal FIR dust emission from nearby isolated molecular cloud cores and combine them with ground-based submillimeter continuum data to derive observational constraints on their temperature and density structure. The aim of this study is to verify the validity of a ray-tracing inversion technique developed to derive the dust temperature and density structure of isolated starless cores directly from the dust emission maps and to test if the resulting temperature and density profiles are consistent with physical models. Using this ray-tracing inversion technique, we derive the dust temperature and density structure of six isolated starless cloud cores. We employ self-consistent radiative transfer modeling to the derived density profiles, treating the ISRF as the only heating source. The best-fit values of local strength of the ISRF and the extinction by the outer envelope are derived by comparing the self-consistently calculated temperature profiles with those derived by the ray-tracing method. We find that all starless cores are significantly colder inside than outside, with the core temperatures showing a strong negative correlation with peak column density. This suggests that their thermal structure is dominated by external heating from the ISRF and shielding by dusty envelopes. The temperature profiles derived with the ray-tracing inversion method can be well-reproduced with self-consistent radiative transfer models.



قيم البحث

اقرأ أيضاً

(Abriged) In the framework of the Herschel GTKP The earliest phases of star formation, we have imaged B68 between 100 and 500 um. Ancillary (sub)mm data, spectral line maps of the 12/13CO(2-1) transitions as well as a NIR extinction map were added to the analysis. We employed a ray-tracing algorithm to derive the 2D mid-plane dust temperature and volume density distribution without suffering from LoS averaging effects of simple SED fitting procedures. Additional 3D radiative transfer calculations were employed to investigate the connection between the external irradiation and the peculiar crescent shaped morphology found in the FIR maps. For the first time, we spatially resolve the dust temperature and density distribution of B68. We find T_dust dropping from 16.7 K at the edge to 8.2 K in the centre, which is about 4 K lower than the result of the simple SED fitting approach. N_H peaks at 4.3x10^22 cm^-2 and n_H at 3.4x10^5 cm^-3 in the centre. B68 has a mass of 3.1 M_sun of material with A_K > 0.2 mag for an assumed distance of 150 pc. We detect a compact source in the southeastern trunk, which is also seen in extinction and CO. We find the radial density distribution from the edge of the inner plateau outward to be n_H ~ r^-3.5. Such a steep profile can arise from either or both of the following: external irradiation with a significant UV contribution or the fragmentation of filamentary structures. Our 3D radiative transfer model of an externally irradiated core by an anisotropic ISRF reproduces the crescent morphology. Our CO observations show that B68 is part of a chain of globules in both space and velocity, which may indicate that it was once part of a filament which dispersed. We also resolve a new compact source in the SE trunk and find that it is slightly shifted in centroid velocity from B68, lending qualitative support to core collision scenarios.
Context: The initial conditions for the gravitational collapse of molecular cloud cores and the subsequent birth of stars are still not well constrained. The characteristic cold temperatures (about 10 K) in such regions require observations at sub-mi llimetre and longer wavelengths. The Herschel Space Observatory and complementary ground-based observations presented in this paper have the unprecedented potential to reveal the structure and kinematics of a prototypical core region at the onset of stellar birth. Aims: This paper aims to determine the density, temperature, and velocity structure of the star-forming Bok globule CB 17. This isolated region is known to host (at least) two sources at different evolutionary stages: a dense core, SMM1, and a Class I protostar, IRS. Methods: We modeled the cold dust emission maps from 100 micron to 1.2 mm with both a modified blackbody technique to determine the optical depth-weighted line-of-sight temperature and column density and a ray-tracing technique to determine the core temperature and volume density structure. Furthermore, we analysed the kinematics of CB17 using the high-density gas tracer N2H+. Results: From the ray-tracing analysis, we find a temperature in the centre of SMM1 of 10.6 K, a flat density profile with radius 9500 au, and a central volume density of n(H) = 2.3x10^5 cm-3. The velocity structure of the N2H+ observations reveal global rotation with a velocity gradient of 4.3 km/s/pc. Superposed on this rotation signature we find a more complex velocity field, which may be indicative of differential motions within the dense core. Conclusions: SMM is a core in an early evolutionary stage at the verge of being bound, but the question of whether it is a starless or a protostellar core remains unanswered.
In a previous paper we identified cores within infrared dark clouds (IRDCs). We regarded those without embedded sources as the least evolved, and labelled them starless. Here we identify the most isolated starless cores and model them using a three-d imensional, multi-wavelength, Monte Carlo, radiative transfer code. We derive the cores physical parameters and discuss the relation between the mass, temperature, density, size and the surrounding interstellar radiation field (ISRF) for the cores. The masses of the cores were found not to correlate with their radial size or central density. The temperature at the surface of a core was seen to depend almost entirely on the level of the ISRF surrounding the core. No correlation was found between the temperature at the centre of a core and its local ISRF. This was seen to depend, instead, on the density and mass of the core.
To study the vertical distribution of the earliest stages of star formation in galaxies, three edge-on spirals, NGC 891, NGC 3628, and IC 5052 observed by the Spitzer Space Telescope InfraRed Array Camera (IRAC) were examined for compact 8 micron cor es using an unsharp mask technique; 173, 267, and 60 cores were distinguished, respectively. Color-color distributions suggest a mixture of PAHs and highly-extincted photospheric emission from young stars. The average V-band extinction is ~20 mag, equally divided between foreground and core. IRAC magnitudes for the clumps are converted to stellar masses assuming an age of 1 Myr, which is about equal to the ratio of the total core mass to the star formation rate in each galaxy. The extinction and stellar mass suggest an intrinsic core diameter of ~18 pc for 5% star formation efficiency. The half-thickness of the disk of 8 micron cores is 105 pc for NGC 891 and 74 pc for IC 5052, varying with radius by a factor of ~2. For NGC 3628, which is interacting, the half-thickness is 438 pc, but even with this interaction, the 8 micron disk is remarkably flat, suggesting vertical stability. Small scale structures like shingles or spirals are seen in the core positions. Very few of the 8 micron cores have optical counterparts.
64 - J. Tige , F. Motte , D. Russeil 2017
To constrain models of high-mass star formation, the Herschel/HOBYS KP aims at discovering massive dense cores (MDCs) able to host the high-mass analogs of low-mass prestellar cores, which have been searched for over the past decade. We here focus on NGC6334, one of the best-studied HOBYS molecular cloud complexes. We used Herschel PACS and SPIRE 70-500mu images of the NGC6334 complex complemented with (sub)millimeter and mid-infrared data. We built a complete procedure to extract ~0.1 pc dense cores with the getsources software, which simultaneously measures their far-infrared to millimeter fluxes. We carefully estimated the temperatures and masses of these dense cores from their SEDs. A cross-correlation with high-mass star formation signposts suggests a mass threshold of 75Msun for MDCs in NGC6334. MDCs have temperatures of 9.5-40K, masses of 75-1000Msun, and densities of 10^5-10^8cm-3. Their mid-IR emission is used to separate 6 IR-bright and 10 IR-quiet protostellar MDCs while their 70mu emission strength, with respect to fitted SEDs, helps identify 16 starless MDC candidates. The ability of the latter to host high-mass prestellar cores is investigated here and remains questionable. An increase in mass and density from the starless to the IR-quiet and IR-bright phases suggests that the protostars and MDCs simultaneously grow in mass. The statistical lifetimes of the high-mass prestellar and protostellar core phases, estimated to be 1-7x10^4yr and at most 3x10^5yr respectively, suggest a dynamical scenario of high-mass star formation. The present study provides good mass estimates for a statistically significant sample, covering the earliest phases of high-mass star formation. High-mass prestellar cores may not exist in NGC6334, favoring a scenario presented here, which simultaneously forms clouds and high-mass protostars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا