ﻻ يوجد ملخص باللغة العربية
We generalize Richardson-Lucy (RL) deblurring to 4-D light fields by replacing the convolution steps with light field rendering of motion blur. The method deals correctly with blur caused by 6-degree-of-freedom camera motion in complex 3-D scenes, without performing depth estimation. We introduce a novel regularization term that maintains parallax information in the light field while reducing noise and ringing. We demonstrate the method operating effectively on rendered scenes and scenes captured using an off-the-shelf light field camera. An industrial robot arm provides repeatable and known trajectories, allowing us to establish quantitative performance in complex 3-D scenes. Qualitative and quantitative results confirm the effectiveness of the method, including commonly occurring cases for which previously published methods fail. We include mathematical proof that the algorithm converges to the maximum-likelihood estimate of the unblurred scene under Poisson noise. We expect extension to blind methods to be possible following the generalization of 2-D Richardson-Lucy to blind deconvolution.
We use the Richardson-Lucy deconvolution algorithm to extract one dimensional (1D) spectra from LAMOST spectrum images. Compared with other deconvolution algorithms, this algorithm is much more fast. The practice on a real LAMOST image illustrates th
Light field cameras can capture both spatial and angular information of light rays, enabling 3D reconstruction by a single exposure. The geometry of 3D reconstruction is affected by intrinsic parameters of a light field camera significantly. In the p
In this paper, we introduce a moving object detection algorithm for fisheye cameras used in autonomous driving. We reformulate the three commonly used constraints in rectilinear images (epipolar, positive depth and positive height constraints) to sph
Next-generation neutrinoless double beta decay experiments aim for half-life sensitivities of ~$10^{27}$ yr, requiring suppressing backgrounds to <1 count/tonne/yr. For this, any extra background rejection handle, beyond excellent energy resolution a
Robots must reliably interact with refractive objects in many applications; however, refractive objects can cause many robotic vision algorithms to become unreliable or even fail, particularly feature-based matching applications, such as structure-fr