ترغب بنشر مسار تعليمي؟ اضغط هنا

Slitless spectroscopy with the James Webb Space Telescope Near-Infrared Camera (JWST NIRCam)

110   0   0.0 ( 0 )
 نشر من قبل Tom Greene
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The James Webb Space Telescope near-infrared camera (JWST NIRCam) has two 2.2 $times$ 2.2 fields of view that are capable of either imaging or spectroscopic observations. Either of two $R sim 1500$ grisms with orthogonal dispersion directions can be used for slitless spectroscopy over $lambda = 2.4 - 5.0$ $mu$m in each module, and shorter wavelength observations of the same fields can be obtained simultaneously. We present the latest predicted grism sensitivities, saturation limits, resolving power, and wavelength coverage values based on component measurements, instrument tests, and end-to-end modeling. Short wavelength (0.6 -- 2.3 $mu$m) imaging observations of the 2.4 -- 5.0 $mu$m spectroscopic field can be performed in one of several different filter bands, either in-focus or defocused via weak lenses internal to NIRCam. Alternatively, the possibility of 1.0 -- 2.0 $mu$m spectroscopy (simultaneously with 2.4 -- 5.0 $mu$m) using dispersed Hartmann sensors (DHSs) is being explored. The grisms, weak lenses, and DHS elements were included in NIRCam primarily for wavefront sensing purposes, but all have significant science applications. Operational considerations including subarray sizes, and data volume limits are also discussed. Finally, we describe spectral simulation tools and illustrate potential scientific uses of the grisms by presenting simulated observations of deep extragalactic fields, galactic dark clouds, and transiting exoplanets.



قيم البحث

اقرأ أيضاً

The James Webb Space Telescope (JWST), scheduled for launch in 2018, is the successor to the Hubble Space Telescope (HST) but with a significantly larger aperture (6.5 m) and advanced instrumentation focusing on infrared science (0.6-28.0 $mu$m ). In this paper we examine the potential for scientific investigation of Titan using JWST, primarily with three of the four instruments: NIRSpec, NIRCam and MIRI, noting that science with NIRISS will be complementary. Five core scientific themes are identified: (i) surface (ii) tropospheric clouds (iii) tropospheric gases (iv) stratospheric composition and (v) stratospheric hazes. We discuss each theme in depth, including the scientific purpose, capabilities and limitations of the instrument suite, and suggested observing schemes. We pay particular attention to saturation, which is a problem for all three instruments, but may be alleviated for NIRCam through use of selecting small sub-arrays of the detectors - sufficient to encompass Titan, but with significantly faster read-out times. We find that JWST has very significant potential for advancing Titan science, with a spectral resolution exceeding the Cassini instrument suite at near-infrared wavelengths, and a spatial resolution exceeding HST at the same wavelengths. In particular, JWST will be valuable for time-domain monitoring of Titan, given a five to ten year expected lifetime for the observatory, for example monitoring the seasonal appearance of clouds. JWST observations in the post-Cassini period will complement those of other large facilities such as HST, ALMA, SOFIA and next-generation ground-based telescopes (TMT, GMT, EELT).
This white paper examines the benefit of the upcoming James Webb Space Telescope for studies of the Solar Systems four giant planets: Jupiter, Saturn, Uranus, and Neptune. JWSTs superior sensitivity, combined with high spatial and spectral resolution , will enable near- and mid-infrared imaging and spectroscopy of these objects with unprecedented quality. In this paper we discuss some of the myriad scientific investigations possible with JWST regarding the giant planets. This discussion is preceded by the specifics of JWST instrumentation most relevant to giant planet observations. We conclude with identification of desired pre-launch testing and operational aspects of JWST that would greatly benefit future studies of the giant planets.
The James Webb Space Telescope (JWST) has the potential to enhance our understanding of near-Earth objects (NEOs). We present results of investigations into the observability of NEOs given the nominal observing requirements of JWST on elongation (85- 135 degrees) and non-sidereal rates ($<$30mas/s). We find that approximately 75% of NEOs can be observed in a given year. However, observers will need to wait for appropriate observing windows. We find that JWST can easily execute photometric observations of meter-sized NEOs which will enhance our understanding of the small NEO population.
We present an estimate of the performance that will be achieved during on orbit operations of the JWST Mid Infrared Instrument, MIRI. The efficiency of the main imager and spectrometer systems in detecting photons from an astronomical target are pres ented, based on measurements at sub-system and instrument level testing, with the end-to-end transmission budget discussed in some detail. The brightest target fluxes that can be measured without saturating the detectors are provided. The sensitivity for long duration observations of faint sources is presented in terms of the target flux required to achieve a signal to noise ratio of 10 after a 10,000 second observation. The algorithms used in the sensitivity model are presented, including the understanding gained during testing of the MIRI Flight Model and flight-like detectors.
The James Webb Space Telescope (JWST) is a large (6.6m), cold (50K), infrared-optimized space observatory that will be launched early in the next decade. The observatory will have four instruments: a near-infrared camera, a near-infrared multi-object spectrograph, and a tunable filter imager will cover the wavelength range, 0.6 to 5.0 microns, while the mid-infrared instrument will do both imaging and spectroscopy from 5.0 to 29 microns. The JWST science goals are divided into four themes. The End of the Dark Ages: First Light and Reionization theme seeks to identify the first luminous sources to form and to determine the ionization history of the early universe. The Assembly of Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and active nuclei within them evolved from the epoch of reionization to the present day. The Birth of Stars and Protoplanetary Systems theme seeks to unravel the birth and early evolution of stars, from infall on to dust-enshrouded protostars to the genesis of planetary systems. The Planetary Systems and the Origins of Life theme seeks to determine the physical and chemical properties of planetary systems including our own, and investigate the potential for the origins of life in those systems. To enable these observations, JWST consists of a telescope, an instrument package, a spacecraft and a sunshield. The telescope consists of 18 beryllium segments, some of which are deployed. The segments will be brought into optical alignment on-orbit through a process of periodic wavefront sensing and control. The JWST operations plan is based on that used for previous space observatories, and the majority of JWST observing time will be allocated to the international astronomical community through annual peer-reviewed proposal opportunities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا