ترغب بنشر مسار تعليمي؟ اضغط هنا

Change of nuclear configurations in the neutrinoless double-$beta$ decay of $^{130}$Te $rightarrow$ $^{130}$Xe and $^{136}$Xe $rightarrow$ $^{136}$Ba

79   0   0.0 ( 0 )
 نشر من قبل Benjamin Kay
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The change in the configuration of valence protons between the initial and final states in the neutrinoless double-$beta$ decay of $^{130}$Te $rightarrow$ $^{130}$Xe and of $^{136}$Xe $rightarrow$ $^{136}$Ba has been determined by measuring the cross sections of the ($d$,$^3$He) reaction with 101-MeV deuterons. Together with our recent determination of the relevant neutron configurations involved in the process, a quantitative comparison with the latest shell-model and interacting-boson-model calculations reveals significant discrepancies. These are the same calculations used to determine the nuclear matrix elements governing the rate of neutrinoless double-$beta$ decay in these systems.

قيم البحث

اقرأ أيضاً

A quantitative description of the change in ground-state neutron occupancies between $^{136}$Xe and $^{136}$Ba, the initial and final state in the neutrinoless double-$beta$ decay of $^{136}$Xe, has been extracted from precision measurements of the c ross sections of single-neutron adding and -removing reactions. Comparisons are made to recent theoretical calculations of the same properties using various nuclear-structure models. These are the same calculations used to determine the magnitude of the nuclear matrix elements for the process, which at present disagree with each other by factors of 2 or 3. The experimental neutron occupancies show some disagreement with the theoretical calculations.
We report on a search for neutrinoless double-beta decay of $^{136}$Xe with EXO-200. No signal is observed for an exposure of 32.5 kg-yr, with a background of ~1.5 x 10^{-3} /(kg yr keV) in the $pm 1sigma$ region of interest. This sets a lower limit on the half-life of the neutrinoless double-beta decay $T_{1/2}^{0 ubetabeta}$($^{136}$Xe) > 1.6 x 10$^{25}$ yr (90% CL), corresponding to effective Majorana masses of less than 140-380 meV, depending on the matrix element calculation.
The CUORICINO experiment was an array of 62 TeO$_{2}$ single-crystal bolometers with a total $^{130}$Te mass of $11.3,$kg. The experiment finished in 2008 after more than 3 years of active operating time. Searches for both $0 u$ and $2 u$ double-beta decay to the first excited $0^{+}$ state in $^{130}$Xe were performed by studying different coincidence scenarios. The analysis was based on data representing a total exposure of N($^{130}$Te)$cdot$t=$9.5times10^{25},$y. No evidence for a signal was found. The resulting lower limits on the half lives are $T^{2 u}_{1/2}(^{130} Terightarrow^{130} Xe^{*})>1.3times10^{23},$y (90% C.L.), and $T^{0 u}_{1/2}(^{130} Terightarrow^{130} Xe^{*})>9.4times10^{23},$y (90% C.L.).
We report on a search for double beta decay of $^{130}$Te to the first $0^{+}$ excited state of $^{130}$Xe using a 9.8 kg$cdot$yr exposure of $^{130}$Te collected with the CUORE-0 experiment. In this work we exploit different topologies of coincident events to search for both the neutrinoless and two-neutrino double-decay modes. We find no evidence for either mode and place lower bounds on the half-lives: $tau^{0 u}_{0^+}>7.9cdot 10^{23}$ yr and $tau^{2 u}_{0^+}>2.4cdot 10^{23}$ yr. Combining our results with those obtained by the CUORICINO experiment, we achieve the most stringent constraints available for these processes: $tau^{0 u}_{0^+}>1.4cdot 10^{24}$ yr and $tau^{2 u}_{0^+}>2.5cdot 10^{23}$ yr.
The CUORE experiment is a large bolometric array searching for the lepton number violating neutrino-less double beta decay ($0 ubetabeta$) in the isotope $mathrm{^{130}Te}$. In this work we present the latest results on two searches for the double be ta decay (DBD) of $mathrm{^{130}Te}$ to the first $0^{+}_2$ excited state of $mathrm{^{130}Xe}$: the $0 ubetabeta$ decay and the Standard Model-allowed two-neutrinos double beta decay ($2 ubetabeta$). Both searches are based on a 372.5 kg$times$yr TeO$_2$ exposure. The de-excitation gamma rays emitted by the excited Xe nucleus in the final state yield a unique signature, which can be searched for with low background by studying coincident events in two or more bolometers. The closely packed arrangement of the CUORE crystals constitutes a significant advantage in this regard. The median limit setting sensitivities at 90% Credible Interval (C.I.) of the given searches were estimated as $mathrm{S^{0 u}_{1/2} = 5.6 times 10^{24} : mathrm{yr}}$ for the ${0 ubetabeta}$ decay and $mathrm{S^{2 u}_{1/2} = 2.1 times 10^{24} : mathrm{yr}}$ for the ${2 ubetabeta}$ decay. No significant evidence for either of the decay modes was observed and a Bayesian lower bound at $90%$ C.I. on the decay half lives is obtained as: $mathrm{(T_{1/2})^{0 u}_{0^+_2} > 5.9 times 10^{24} : mathrm{yr}}$ for the $0 ubetabeta$ mode and $mathrm{(T_{1/2})^{2 u}_{0^+_2} > 1.3 times 10^{24} : mathrm{yr}}$ for the $2 ubetabeta$ mode. These represent the most stringent limits on the DBD of $^{130}$Te to excited states and improve by a factor $sim5$ the previous results on this process.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا