ﻻ يوجد ملخص باللغة العربية
The individual building blocks of van der Waals (vdW) heterostructures host fascinating physical phenomena, ranging from ballistic electron transport in graphene to striking optical properties of MoSe2 sheets. The presence of bonded and non-bonded cohesive interactions in a vdW heterostructure, promotes diversity in their structural arrangements, which in turn profoundly modulate the properties of their individual constituents. Here, we report on the presence of correlated structural disorder coexisting with the nearly perfect crystallographic order along the growth direction of epitaxial vdW heterostructures of Bi2Se3/graphene/SiC. Using the depth penetration of X-ray diffraction microscopy and scattering, we probed their crystal structure from atomic to mesoscopic length scales, to reveal that their structural diversity is underpinned by spatially correlated disorder states. The presence of the latter induces on a system, widely considered to behave as a collection of nearly independent 2-dimensional units, a pseudo-3-dimensional character, when subjected to epitaxial constraints and ordered substrate interactions. These findings shed new light on the nature of the vast structural landscape of vdW heterostructures and could enable new avenues in modulating their unique properties by correlated disorder.
Van der Waals materials can be easily combined in lateral and vertical heterostructures, providing an outstanding platform to engineer elusive quantum states of matter. However, a critical problem in material science is to establish tangible links be
The development of van der Waals (vdW) crystals and their heterostructures has created a fascinating platform for exploring optoelectronic properties in the two-dimensional (2D) limit. With the recent discovery of 2D magnets, the control of the spin
Vertically stacked van der Waals heterostructures are a lucrative platform for exploring the rich electronic and optoelectronic phenomena in two-dimensional materials. Their performance will be strongly affected by impurities and defects at the inter
CeTe3 is a unique platform to investigate the itinerant magnetism in a van der Waals (vdW) coupled metal. Despite chemical pressure being a promising route to boost quantum fluctuation in this system, a systematic study on the chemical pressure effec
The properties of van der Waals (vdW) heterostructures are drastically altered by a tunable moire superlattice arising from periodic variations of atomic alignment between the layers. Exciton diffusion represents an important channel of energy transp