ترغب بنشر مسار تعليمي؟ اضغط هنا

Synchrotron Emission from Dark Matter in Galactic Subhalos. A Look into the Smith Cloud

84   0   0.0 ( 0 )
 نشر من قبل Martin Vollmann
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

One of the key predictions of the WIMP paradigm for Dark Matter (DM) is that DM particles can annihilate into charged particles. These annihilations will proceed in e.g. Galactic subhalos such as dwarf Galaxies or, as recently pointed out, high velocity clouds such as the Smith Cloud. In this note, we focus on the radio emission associated with DM annihilations into electrons and positrons occurring in the Smith Cloud. The phenomenology of this emission is discussed in quite some detail. We argue that the uncertainties in the propagation can be captured by the typical diffusion-loss length parameter (Syrovatskii variable) but that the angle-integrated radio fluxes are independent of the propagation. We conclude that if the Smith Cloud is indeed dominated by DM, radio signals from DM annihilation stand out amongst other messengers. Furthermore, low frequencies such as the ones observed by e.g. the Low Frequency Array (LOFAR) and the next-generation Square Kilometre Array (SKA) are optimal for searches for DM in the Smith Cloud. As a practical application, we set conservative constraints on dark matter annihilation cross section using data of continuum radio emission from the Galaxy at 22 MHz and at 1.4 GHz. Stronger constraints could be reached by background subtraction, exploiting the profile and frequency dependence of the putative DM signal. We set stronger but tentative limits using the median noise in brightness temperature from the Green Bank Telescope and the LOFAR sensitivities.

قيم البحث

اقرأ أيضاً

The elastic scattering between dark matter particles and radiation represents an attractive possibility to solve a number of discrepancies between observations and standard cold dark matter predictions, as the induced collisional damping would imply a suppression of small-scale structures. We consider this scenario and confront it with measurements of the ionization history of the Universe at several redshifts and with recent estimates of the counts of Milky Way satellite galaxies. We derive a conservative upper bound on the dark matter-photon elastic scattering cross section of $sigma_{gamma rm{DM}} < 8 times 10^{-10} , sigma_T , left(m_{rm DM}/{rm GeV}right)$ at $95%$~CL, about one order of magnitude tighter than previous {constraints from satellite number counts}. Due to the strong degeneracies with astrophysical parameters, the bound on the dark matter-photon scattering cross section derived here is driven by the estimate of the number of Milky Way satellite galaxies. Finally, we also argue that future 21~cm probes could help in disentangling among possible non-cold dark matter candidates, such as interacting and warm dark matter scenarios. Let us emphasize that bounds of similar magnitude to the ones obtained here could be also derived for models with dark matter-neutrino interactions and would be as constraining as the tightest limits on such scenarios.
The recent discovery of an enriched metallicity for the Smith high-velocity HI cloud (SC) lends support to a Galactic origin for this system. We use a dynamical model of the galactic fountain to reproduce the observed properties of the SC. In our mod el, fountain clouds are ejected from the region of the disc spiral arms and move through the halo interacting with a pre-existing hot corona. We find that a simple model where cold gas outflows vertically from the Perseus spiral arm reproduces the kinematics and the distance of the SC, but is in disagreement with the clouds cometary morphology, if this is produced by ram-pressure stripping by the ambient gas. To explain the cloud morphology we explore two scenarios: a) the outflow is inclined with respect to the vertical direction; b) the cloud is entrained by a fast wind that escapes an underlying superbubble. Solutions in agreement with all observational constraints can be found for both cases, the former requires outflow angles >40 deg while the latter requires >1000 km/s winds. All scenarios predict that the SC is in the ascending phase of its trajectory and have large - but not implausible - energy requirements.
Dark matter annihilations in the Galactic halo inject relativistic electrons and positrons which in turn generate a synchrotron radiation when interacting with the galactic magnetic field. We calculate the synchrotron flux for various dark matter ann ihilation channels, masses, and astrophysical assumptions in the low-frequency range and compare our results with radio surveys from 22 MHz to 1420 MHz. We find that current observations are able to constrain particle dark matter with thermal annihilation cross-sections, i.e. (sigma v) = 3 x 10^-26 cm^3/s, and masses M_DM < 10 GeV. We discuss the dependence of these bounds on the astrophysical assumptions, namely galactic dark matter distribution, cosmic rays propagation parameters, and structure of the galactic magnetic field. Prospects for detection in future radio surveys are outlined.
Motivated by the idea that a subset of HVCs trace dark matter substructure in the Local Group, we search for signs of star formation in the Smith Cloud, a nearby ~2x10^6 Msun HVC currently falling into the Milky Way. Using GALEX NUV and WISE/2MASS NI R photometry, we apply a series of color and apparent magnitude cuts to isolate candidate O and B stars that are plausibly associated with the Smith Cloud. We find an excess of stars along the line of sight to the cloud, but not at a statistically significant level relative to a control region. The number of stars found in projection on the cloud after removing an estimate of the contamination by the Milky Way implies an average star formation rate surface density of 10^(-4.8 +/- 0.3) Msun yr^(-1) kpc^(-2), assuming the cloud has been forming stars at a constant rate since its first passage through the Milky Way ~70 Myr ago. This value is consistent with the star formation rate expected based on the average gas density of the cloud. We also discuss how the newly discovered star forming galaxy Leo P has very similar properties to the Smith Cloud, but its young stellar population would not have been detected at a statistically significant level using our method. Thus, we cannot yet rule out the idea that the Smith Cloud is really a dwarf galaxy.
We investigated the detectability of Galactic subhalos with masses $(10^6-10^9)M_{odot}$ formed by annihilating WIMP dark matter by the planned GAMMA-400 gamma-ray telescope. The inner structure of dark matter subhalos and their distribution in the G alaxy were taken from corresponding simulations. We showed that the expected gamma-ray flux from subhalos strongly depends on WIMP mass and subhalo concentration, but less strongly depends on the subhalo mass. In an optimistic case we may expect the flux of 10-100 ph/year above 100 MeV from the closest and most massive subhalos, which would be detectable sources for GAMMA-400. However, resolving the inner structure of subhalos might be possible only by the joint analysis of the future GAMMA-400 data and data from other telescopes due to smallness of fluxes. Also we considered the recent subhalo candidates 3FGL J2212.5+0703 and J1924.8-1034 within the framework of our model. We concluded that it is very unlikely that these sources belong to the subhalo population.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا