ترغب بنشر مسار تعليمي؟ اضغط هنا

Comparison of solar radio and EUV synoptic limb charts during the present solar maximum

98   0   0.0 ( 0 )
 نشر من قبل Caius Selhorst
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The present solar cycle is particular in many aspects: it had a delayed rising phase, it is the weakest of the last 100 years, and it presents two peaks separated by more than one year. To understand the impact of these characteristics on the solar chromosphere and coronal dynamics, images from a wide wavelength range are needed. In this work we use the 17~GHz radio continuum, formed in the upper chromosphere and the EUV lines 304 and 171~{AA}, that come from the transition region (He II) and the corona (Fe IX, X), respectively. We analyze daily images at 304 and 171~{AA} obtained by the Atmospheric Imaging Assembly (AIA). The 17~GHz maps were obtained by the Nobeyama Radioheliograph (NoRH). To construct synoptic limb charts, we calculated the mean emission of delimited limb areas with 100 wide and angular separation of $5^circ$. At the equatorial region, the results show an hemispheric asymmetry of the solar activity. The northern hemisphere dominance is coincident with the first sunspot number peak, whereas the second peak occurs concurrently with the increase in the activity at the south. The polar emission reflects the presence of coronal holes at both EUV wavelengths, moreover, the 17~GHz polar brightenings can be associated with the coronal holes. Until 2013, both EUV coronal holes and radio polar brightenings were more predominant at the south pole. Since then they have not been apparent in the north, but thus appear in the beginning of 2015 in the south as observed in the synoptic charts. This work strengthens the association between coronal holes and the 17~GHz polar brightenings as it is evident in the synoptic limb charts, in agreement with previous case study papers. The enhancement of the radio brightness in coronal holes is explained by the presence of bright patches closely associated with the presence of intense unipolar magnetic fields.

قيم البحث

اقرأ أيضاً

We present the association rates between solar energetic particles (SEPs) and the radio emission signatures in the corona and IP space during the entire solar cycle 23. We selected SEPs associated with X and M-class flares from the visible solar hemi sphere. All SEP events are also accompanied by coronal mass ejections. Here, we focus on the correlation between the SEP events and the appearance of radio type II, III and IV bursts on dynamic spectra. For this we used the available radio data from ground-based stations and the Wind/WAVES spacecraft. The associations are presented separately for SEP events accompanying activity in the eastern and western solar hemisphere. We find the highest association rate of SEP events to be with type III bursts, followed by types II and IV. Whereas for types III and IV no longitudinal dependence is noticed, these is a tendency for a higher SEP-association rate with type II bursts in the eastern hemisphere. A comparison with reports from previous studies is briefly discussed.
We describe a new technique to measure the height of the X-ray limb with observations from occulted X-ray flare sources as observed by the RHESSI (the Reuven Ramaty High-Energy Spectroscopic Imager) satellite. This method has model dependencies diffe rent from those present in traditional observations at optical wavelengths, which depend upon detailed modeling involving radiative transfer in a medium with complicated geometry and flows. It thus provides an independent and more rigorous measurement of the true solar radius, meaning that of the mass distribution. RHESSIs measurement makes use of the flare X-ray sources spatial Fourier components (the visibilities), which are sensitive to the presence of the sharp edge at the lower boundary of the occulted source. We have found a suitable flare event for analysis, SOL2011-10-20T03:25 (M1.7), and report a first result from this novel technique here. Using a 4-minute integration over the 3-25 keV photon energy range, we find $R_{mathrm{X-ray}} = 960.11 pm 0.15 pm 0.29$ arcsec, at 1 AU, where the uncertainties include statistical uncertainties from the method and a systematic error. The standard VAL-C model predicts a value of 959.94 arcsec, about 1$sigma$ below our value.
The specification of the upper atmosphere strongly relies on solar proxies that can properly reproduce the solar energetic input in the UV. Whilst the microwave flux at 10.7 cm (also called F10.7 index) has been routinely used as a solar proxy, we sh ow that the radio flux at other wavelengths provides valuable complementary information that enhances their value for upper atmospheric modelling. We merged daily observations from various observatories into a single homogeneous data set of fluxes at wavelengths of 30, 15, 10.7, 8 and 3.2 cm, spanning from 1957 to today. Using blind source separation (BSS), we show that their rotational modulation contains three contributions, which can be interpreted in terms of thermal bremsstrahlung and gyro-resonance emissions. The latter account for 90% of the rotational variability in the F10.7 index. Most solar proxies, such as the MgII index, are remarkably well reconstructed by simple linear combination of radio fluxes at various wavelengths. The flux at 30 cm stands out as an excellent proxy and is better suited than the F10.7 index for the modelling the thermosphere-ionosphere system, most probably because it receives a stronger contribution from thermal bremsstrahlung. This better performance is illustrated here through comparison between the observed thermospheric density, and reconstructions by the Drag Temperature Model.
At the beginning of the 4 November 2015 flare, in the 1300 -- 2000 MHz frequency range, we observed a very rare slowly positively drifting burst. We searched for associated phenomena in simultaneous EUV observations made by IRIS, SDO/AIA, Hinode/XRT and in H alpha observations. We found that this radio burst was accompanied with the bright blob, visible at transition region, coronal, and flare temperatures, falling down to the chromosphere along the dark loop with the velocity of about 280 km/s. The dark loop was visible in H alpha but disappeared afterwards. Furthermore, we found that the falling blob interacted with the chromosphere as expressed by a sudden change of the H alpha spectra at the location of this interaction. Considering different possibilities we propose that the observed slowly positively drifting burst is generated by the thermal conduction front formed in front of the falling hot EUV blob.
The solar group at the National Astronomical Observatory of Japan is conducting synoptic solar observations with the Solar Flare Telescope. While it is a part of a long-term solar monitoring, contributing to the study of solar dynamo governing solar activity cycles, it is also an attempt at contributing to space weather research. The observations include imaging with filters for H$alpha$, Ca K, G-band, and continuum, and spectropolarimetry at the wavelength bands including the He I 1083.0 nm / Si I 1082.7 nm and the Fe I 1564.8 nm lines. Data for the brightness, Doppler signal, and magnetic field information of the photosphere and the chromosphere are obtained. In addition to monitoring dynamic phenomena like flares and filament eruptions, we can track the evolution of the magnetic fields that drive them on the basis of these data. Furthermore, the magnetic field in solar filaments, which develops into a part of the interplanetary magnetic cloud after their eruption and occasionally hits the Earth, can be inferred in its pre-eruption configuration. Such observations beyond mere classical monitoring of the Sun will hereafter become crucially important from the viewpoint of the prediction of space weather phenomena. The current synoptic observations with the Solar Flare Telescope is considered to be a pioneering one for future synoptic observations of the Sun with advanced instruments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا