ﻻ يوجد ملخص باللغة العربية
We combine the eyebrow-raising quantum phenomena of erasure and counterfactuality for the first time, proposing a simple yet unusual quantum eraser: A distant Bob can decide to erase which-path information from Alices photon, dramatically restoring interference, without previously-shared entanglement, and without Alices photon ever leaving her lab.
In science, one observes correlations and invents theoretical models that describe them. In all sciences, besides quantum physics, all correlations are described by either of two mechanisms. Either a first event influences a second one by sending som
We call a probabilistic theory complete if it cannot be further refined by no-signaling hidden-variable models, and name a theory spooky if every equivalent hidden-variable model violates Shimonys Outcome Independence. We prove that a complete theory
Entanglement is widely believed to lie at the heart of the advantages offered by a quantum computer. This belief is supported by the discovery that a noiseless (pure) state quantum computer must generate a large amount of entanglement in order to off
The phenomenon of quantum erasure has long intrigued physicists, but has surprisingly found limited practical application. Here, we propose an erasure-based protocol for quantum key distribution (QKD) that promises inherent security against detector attacks.
Quantum channels, which break entanglement, incompatibility, or nonlocality, are not useful for entanglement-based, one-sided device-independent, or device-independent quantum information processing, respectively. Here, we show that such breaking cha